From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals

The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environm...

Full description

Saved in:
Bibliographic Details
Published inMetallomics Vol. 10; no. 6; p. 777
Main Authors Thompson, E David, Hogstrand, Christer, Glover, Chris N
Format Journal Article
LanguageEnglish
Published England 20.06.2018
Online AccessGet more information

Cover

Loading…
More Information
Summary:The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors. However, there are examples of terrestrial animals (insect larvae) and marine vertebrates (e.g. squirrelfish) that accumulate high body and/or tissue metal burdens. This review examines examples of animal hyperaccumulation of the elements arsenic, copper, iron, titanium, vanadium and zinc, describing mechanisms by which accumulation occurs and, where possible, hypothesizing functional roles. Groups such as the ascidians (sea squirts), molluscs (gastropods, bivalves and cephalopods) and polychaete annelids feature prominently as animals with hyperaccumulating capacity. Many of these species are potential model organisms offering insight into fundamental processes underlying metal handling, with relevance to human disease and aquatic metal toxicity, and some offer promise in applied fields such as bioremediation.
ISSN:1756-591X
DOI:10.1039/c8mt00078f