Effect of coefficient of restitution in Euler-Euler CFD simulation of fluidized-bed hydrodynamics

Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) was extended to study the effect of the elasticity of particle collision on the hydrod...

Full description

Saved in:
Bibliographic Details
Published inParticuology Vol. 15; no. 4; pp. 170 - 177
Main Authors Loha, Chanchal, Chattopadhyay, Himadri, Chatterjee, Pradip K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-~m particles. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed, where the solid-phase properties were calculated by applying the kinetic theory of granular flow. To investigate the effect of the elasticity of particle collision, different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail. Simulations were performed for two different solid-phase wall boundary conditions. No bubble formation was observed for perfectly elastic collision. The bubble formation started as soon as the coefficient of restitution was set below 1.0, and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution. Simulation results were also compared with experimental data available in the literature, and good agreement was found for coefficients of restitution of 0.95 and 0.99.
Bibliography:Coefficient of restitution Fluidization Hydrodynamics Computational fluid dynamics Euler-Euler approach
11-5671/O3
Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-~m particles. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed, where the solid-phase properties were calculated by applying the kinetic theory of granular flow. To investigate the effect of the elasticity of particle collision, different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail. Simulations were performed for two different solid-phase wall boundary conditions. No bubble formation was observed for perfectly elastic collision. The bubble formation started as soon as the coefficient of restitution was set below 1.0, and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution. Simulation results were also compared with experimental data available in the literature, and good agreement was found for coefficients of restitution of 0.95 and 0.99.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2001
2210-4291
DOI:10.1016/j.partic.2013.07.001