Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates
Two-dimensional (2D) materials have attracted significant interest because of their large surface-to-volume ratios and electron confinement. Compared to common 2D materials such as graphene or metal hydroxides, with their intrinsic layered atomic structures, the formation mechanisms of 2D metal oxid...
Saved in:
Published in | Nature materials Vol. 18; no. 9; pp. 970 - 976 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2019
Nature Publishing Group Springer Nature - Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1476-1122 1476-4660 1476-4660 |
DOI | 10.1038/s41563-019-0415-3 |
Cover
Loading…
Summary: | Two-dimensional (2D) materials have attracted significant interest because of their large surface-to-volume ratios and electron confinement. Compared to common 2D materials such as graphene or metal hydroxides, with their intrinsic layered atomic structures, the formation mechanisms of 2D metal oxides with a rocksalt structure are not well understood. Here, we report the formation process for 2D cobalt oxide and cobalt nickel oxide nanosheets, after analysis by in situ liquid-phase transmission electron microscopy. Our observations reveal that three-dimensional (3D) nanoparticles are initially formed from the molecular precursor solution and then transform into 2D nanosheets. Ab initio calculations show that a small nanocrystal is dominated by positive edge energy, but when it grows to a certain size, the negative surface energy becomes dominant, driving the transformation of the 3D nanocrystal into a 2D structure. Uncovering these growth pathways, including the 3D-to-2D transition, provides opportunities for future material design and synthesis in solution.
Liquid phase transmission electron microscopy reveals the growth pathway of 2D cobalt oxide and cobalt nickel oxide, in which 3D nanoparticles are formed first and then spread and transform into 2D nanosheets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science None |
ISSN: | 1476-1122 1476-4660 1476-4660 |
DOI: | 10.1038/s41563-019-0415-3 |