Relationship between orientation to a blast and pressure wave propagation inside the rat brain

▶ Pressure was measured inside the brains of rats exposed to blast. ▶ Three different orientations to blast was used: head-on, side-on and head away from blast. ▶ The highest amplitude and longer pressure duration was measured in the head-on exposures. ▶ The pressure traces inside the brain assume c...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 195; no. 1; pp. 61 - 66
Main Authors Chavko, Mikulas, Watanabe, Tomas, Adeeb, Saleena, Lankasky, Jason, Ahlers, Stephen T., McCarron, Richard M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:▶ Pressure was measured inside the brains of rats exposed to blast. ▶ Three different orientations to blast was used: head-on, side-on and head away from blast. ▶ The highest amplitude and longer pressure duration was measured in the head-on exposures. ▶ The pressure traces inside the brain assume contribution of both, the dynamic and static pressure transfer. ▶ Pressure wave diffraction could be another source of pressure inside the brain. Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (∼35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0165-0270
1872-678X
DOI:10.1016/j.jneumeth.2010.11.019