Design and Test of Adaptive Leveling System for Orchard Operation Platform
When the orchard operation platform is in use within the orchard, issues of tilting and overturning can arise due to uneven ground, necessitating instant leveling. In this study, the orchard operation platform is simplified into a four-point leveling mechanism, and an adaptive leveling system based...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 5; p. 1319 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.02.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | When the orchard operation platform is in use within the orchard, issues of tilting and overturning can arise due to uneven ground, necessitating instant leveling. In this study, the orchard operation platform is simplified into a four-point leveling mechanism, and an adaptive leveling system based on an inertial measurement unit (IMU) is designed. The relationship between coordinate transformation is utilized to derive the platform tilt angle and the position error relationship of the electric actuator, allowing for the analysis of the angle adjustment factors of the leveling mechanism. Through co-simulation using MATLAB and ADAMS, fuzzy control is implemented in addition to PID control, resulting in improved performance. A prototype model of the orchard operation platform is produced and tested, with the platform’s attitude angle remaining stable within a range of ±1.5°. The average leveling time is found to be within 3.6 s. The mean values of dynamic leveling inclination under PID and fuzzy PID control are 2.6° and 1.6°, respectively, with corresponding standard deviations of 1.4° and 0.8°. It conforms to the development trend of agricultural machinery electrification and intelligence and provides a reference basis for manufacturers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25051319 |