Study of Global Navigation Satellite System Receivers' Accuracy for Unmanned Vehicles
The development of unmanned ground vehicles and unmanned aerial vehicles requires high-precision navigation due to the autonomous motion and higher traffic intensity. The existing L1 band GNSS receivers are a good and cheap decision for smartphones, vehicle navigation, fleet management systems, etc....
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 18; p. 5909 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The development of unmanned ground vehicles and unmanned aerial vehicles requires high-precision navigation due to the autonomous motion and higher traffic intensity. The existing L1 band GNSS receivers are a good and cheap decision for smartphones, vehicle navigation, fleet management systems, etc., but their accuracy is not good enough for many civilian purposes. At the same time, real-time kinematic (RTK) navigation allows for position precision in a sub-centimeter range, but the system cost significantly narrows this navigation to a very limited area of applications, such as geodesy. A practical solution includes the integration of dual-band GNSS receivers and inertial sensors to solve high-precision navigation tasks, but GNSS position accuracy may significantly affect IMU performance due to having a great impact on Kalman filter performance in unmanned vehicles. The estimation of dilution-of-precision (DOP) parameters is essential for the filter performance as the optimality of the estimation in the filter is closely connected to the quality of a priori information about the noise covariance matrix and measurement noise covariance. In this regard, the current paper analyzes the DOP parameters of the latest generation dual-band GNSS receivers and compares the results with the L1 ones. The study was accomplished using two types of antennas-L1/L5 band patch and wideband helix antennas, which were designed and assembled by the authors. In addition, the study is extended with a comparison of GNSS receivers from different generations but sold on the market by one of the world's leading GNSS manufacturers. The analyses of dilution-of-precision (DOP) parameters show that the introduction of dual-band receivers may significantly increase the navigation precision in a sub-meter range, in addition to multi-constellation signal reception. The fast advances in the performance of the integrated CPU in GNSS receivers allow the number of correlations and tracking satellites to be increased from 8-10 to 24-30, which also significantly improves the position accuracy even of L1-band receivers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24185909 |