A scheme for radiation pressure and photon diffusion with the M1 closure in ramses-rt

We describe and test an updated version of radiation-hydrodynamics in the ramses code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 449; no. 4; pp. 4380 - 4403
Main Authors Rosdahl, J., Teyssier, R.
Format Journal Article
LanguageEnglish
Published London Oxford University Press 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe and test an updated version of radiation-hydrodynamics in the ramses code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an optically semithick medium, direct pressure on gas from ionizing radiation, convergence of our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the competition between gravity and radiation pressure in a dusty atmosphere, and the formation of radiative Rayleigh–Taylor instabilities. With the new features, ramses-rt can be used for state-of-the-art simulations of radiation feedback from first principles, on galactic and cosmological scales, including not only direct radiation pressure from ionizing photons, but also indirect pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation, both in the optically thin and thick limits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv567