Who will drive electric vehicles, olivine or spinel?

Lithium iron phosphate olivine (LFP) and lithium manganese oxide spinel (LMO) are competitive and complementary to each other as cathode materials for lithium ion batteries, especially for use in hybrid electric vehicles and electric vehicles. Interest in these materials, due to their low cost and h...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 4; no. 5; pp. 1621 - 1633
Main Authors Park, Ok Kyung, Cho, Yonghyun, Lee, Sanghan, Yoo, Ho-Chun, Song, Hyun-Kon, Cho, Jaephil
Format Journal Article
LanguageEnglish
Published 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lithium iron phosphate olivine (LFP) and lithium manganese oxide spinel (LMO) are competitive and complementary to each other as cathode materials for lithium ion batteries, especially for use in hybrid electric vehicles and electric vehicles. Interest in these materials, due to their low cost and high safety, has pushed research and development forward and toward high performance in terms of rate capability and capacity retention or cyclability at a high temperature of around 60 [degree]C. From the view point of basic properties, LFP shows a higher gravimetric capacity while LMO has better conductivities, both electrically and ionically. According to our comparison experiments, depending on the material properties and operational potential window, LFP was favored for fast charging while LMO led to better discharge performances. Capacity fading at high temperatures due to metal dissolution was revealed to be the most problematic issue of LFP and LMO-based cells for electric vehicles (EVs), with thicker electrodes, in the case of no additives in the electrolyte and no coating to prevent metal dissolution on cathode materials. Various strategies to enhance the properties of LFP and LMO are ready for the realization of EVs in the near future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1754-5692
1754-5706
DOI:10.1039/C0EE00559B