Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse
Recent observations suggest the involvement of the gastrointestinal tract in the pathogenesis of islet autoimmunity. Thus, the modulation of gut-associated lymphoid tissue may represent a means to affect the natural history of the disease. Oral administration of probiotic bacteria can modulate local...
Saved in:
Published in | Diabetologia Vol. 48; no. 8; pp. 1565 - 1575 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
01.08.2005
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent observations suggest the involvement of the gastrointestinal tract in the pathogenesis of islet autoimmunity. Thus, the modulation of gut-associated lymphoid tissue may represent a means to affect the natural history of the disease. Oral administration of probiotic bacteria can modulate local and systemic immune responses; consequently, we investigated the effects of oral administration of the probiotic compound VSL#3 on the occurrence of diabetes in non-obese diabetic (NOD) mice.
VSL#3 was administered to female NOD mice three times a week starting from 4 weeks of age. A control group received PBS. Whole blood glucose was measured twice a week. IFN-gamma and IL-10 production/expression was evaluated by ELISA in culture supernatants of mononuclear cells isolated from Peyer's patches and the spleen, and by real-time PCR in the pancreas. Insulitis was characterised by immunohistochemistry and histomorphometric studies.
Early oral administration of VSL#3 prevented diabetes development in NOD mice. Protected mice showed reduced insulitis and a decreased rate of beta cell destruction. Prevention was associated with an increased production of IL-10 from Peyer's patches and the spleen and with increased IL-10 expression in the pancreas, where IL-10-positive islet-infiltrating mononuclear cells were detected. The protective effect of VSL#3 was transferable to irradiated mice receiving diabetogenic cells and splenocytes from VSL#3-treated mice.
Orally administered VSL#3 prevents autoimmune diabetes and induces immunomodulation by a reduction in insulitis severity. Our results provide a sound rationale for future clinical trials of the primary prevention of type 1 diabetes by oral VSL#3 administration. |
---|---|
ISSN: | 0012-186X 1432-0428 |
DOI: | 10.1007/s00125-005-1831-2 |