Models of cuspy triaxial stellar systems – IV. Rotating systems

We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equa...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 459; no. 1; pp. 1082 - 1096
Main Authors Carpintero, D. D., Muzzio, J. C.
Format Journal Article
LanguageEnglish
Published London Oxford University Press 11.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semi-axes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two-thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short-axis tubes, while long-axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are also found in the present models. Finally, our frequency maps show empty regions where studies of orbits on fixed potentials found orbits, a likely consequence of the self-consistency of our models that excludes them.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw720