Two‐part models for repeatedly measured ordinal data with “don't know” category

Ordinal data (eg, “low,” “medium,” “high”; graded response on a Likert scale) with an additional “don't know” category are frequently encountered in the medical, social, and behavioral science literature. The handling of a “don't know” option presents unique challenges as it often “destroy...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 39; no. 30; pp. 4574 - 4592
Main Authors Gueorguieva, Ralitza, Buta, Eugenia, Morean, Meghan, Krishnan‐Sarin, Suchitra
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ordinal data (eg, “low,” “medium,” “high”; graded response on a Likert scale) with an additional “don't know” category are frequently encountered in the medical, social, and behavioral science literature. The handling of a “don't know” option presents unique challenges as it often “destroys” the ordinal nature of the data. Commonly, nominal models are employed which ignore the partial ordering and have a complicated interpretation, especially in situations with repeatedly measured outcomes. We propose two‐part models that easily accommodate longitudinal partially ordered (semiordinal) data. The most easily interpretable formulation consists of a random effect logistic submodel for “don't know” vs all the other categories combined, and a random effect ordinal submodel for the ordered categories. Correlated random effects account for statistical dependence within individual. An extension allowing for nonproportionality of odds for the predictor effects in the ordinal submodel is also considered. Maximum likelihood estimation is performed using adaptive Gaussian quadrature in SAS PROC NLMIXED. A simulation study is performed to evaluate the performance of the estimation algorithm in terms of bias and efficiency, and to compare the results of joint and separate models of the two parts, and of proportional and nonproportional model formulations. The methods are motivated and illustrated on a dataset from a study of adolescents' perceptions of nicotine strength of JUUL e‐cigarettes. Using the proposed approach we show that adolescents perceive 5% nicotine content as relatively low, a misconception more pronounced among past month nonusers than among past month users of JUUL e‐cigarettes.
Bibliography:Funding information
National Center for Advancing Translational Sciences, UL1TR000142; National Institute on Drug Abuse, U54DA036151
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.8739