Solution to security constrained unit commitment problem using genetic algorithm
In this paper Optimal Power Flow (OPF) with line flow constraint is incorporated in solving the Unit Commitment (UC) problem using Genetic Algorithm (GA). In this proposed approach the problem is solved in two phases. In the first phase unit commitment is solved with prevailing constraints, without...
Saved in:
Published in | International journal of electrical power & energy systems Vol. 32; no. 2; pp. 117 - 125 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper Optimal Power Flow (OPF) with line flow constraint is incorporated in solving the Unit Commitment (UC) problem using Genetic Algorithm (GA). In this proposed approach the problem is solved in two phases. In the first phase unit commitment is solved with prevailing constraints, without line flow constraint by genetic algorithm. In the second phase the violations in the lines are minimized for a committed schedule using GA based OPF. The resulting solution minimizes line flow violations in the critical lines under unit’s decommitted hours by adjusting the unit generations. In this paper, a 66-bus Indian utility system with 12 generating units and 93 transmission lines is considered to exhibit the effectiveness of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0142-0615 1879-3517 |
DOI: | 10.1016/j.ijepes.2009.06.019 |