FLIP-Q: A QCIF Resolution Focal-Plane Array for Low-Power Image Processing

This paper reports a 176×144-pixel smart image sensor designed and fabricated in a 0.35 CMOS-OPTO process. The chip implements a massively parallel focal-plane processing array which can output different simplified representations of the scene at very low power. The array is composed of pixel-level...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 46; no. 3; pp. 669 - 680
Main Authors Fernández-Berni, J, Carmona-Galán, R, Carranza-González, L
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports a 176×144-pixel smart image sensor designed and fabricated in a 0.35 CMOS-OPTO process. The chip implements a massively parallel focal-plane processing array which can output different simplified representations of the scene at very low power. The array is composed of pixel-level processing elements which carry out analog image processing concurrently with photosensing. These processing elements can be grouped into fully-programmable rectangular-shape areas by loading the appropriate interconnection patterns into the registers at the edge of the array. The targeted processing can be thus performed block-wise. Readout is done pixel-by-pixel in a random access fashion. On-chip 8b ADC is provided. The image processing primitives implemented by the chip, experimentally tested and fully functional, are scale space and Gaussian pyramid generation, fully-programmable multiresolution scene representation-including foveation-and block-wise energy-based scene representation. The power consumption associated to the capture, processing and A/D conversion of an image flow at 30 fps, with full-frame processing but reduced frame size output, ranges from 2.7 mW to 5.6 mW, depending on the operation to be performed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2010.2102591