Sensor explication: knowledge-based robotic plan execution through logical objects
Complex robot tasks are usually described as high level goals, with no details on how to achieve them. However, details must be provided to generate primitive commands to control a real robot. A sensor explication concept that makes details explicit from general commands is presented. We show how th...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 27; no. 4; pp. 611 - 625 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Complex robot tasks are usually described as high level goals, with no details on how to achieve them. However, details must be provided to generate primitive commands to control a real robot. A sensor explication concept that makes details explicit from general commands is presented. We show how the transformation from high-level goals to primitive commands can be performed at execution time and we propose an architecture based on reconfigurable objects that contain domain knowledge and knowledge about the sensors and actuators available. Our approach is based on two premises: 1) plan execution is an information gathering process where determining what information is relevant is a great part of the process; and 2) plan execution requires that many details are made explicit. We show how our approach is used in solving the task of moving a robot to and through an unknown, and possibly narrow, doorway; where sonic range data is used to find the doorway, walls, and obstacles. We illustrate the difficulty of such a task using data from a large number of experiments we conducted with a real mobile robot. The laboratory results illustrate how the proper application of knowledge in the integration and utilization of sensors and actuators increases the robustness of plan execution. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1083-4419 1941-0492 |
DOI: | 10.1109/3477.604104 |