Specific detection of the novel goose astrovirus using a TaqMan real-time RT-PCR technology
Recently, a novel goose astrovirus (N-GoAstV) was discovered in China, with the transmission route of N-GoAstV unclear. In this study, we developed a TaqMan-based real-time RT-PCR (qRT-PCR) assay for the detection of N-GoAstV infection. After the optimization of the qRT-PCR assay conditions, the res...
Saved in:
Published in | Microbial pathogenesis Vol. 137; p. 103766 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, a novel goose astrovirus (N-GoAstV) was discovered in China, with the transmission route of N-GoAstV unclear. In this study, we developed a TaqMan-based real-time RT-PCR (qRT-PCR) assay for the detection of N-GoAstV infection. After the optimization of the qRT-PCR assay conditions, the results demonstrated that the lower limit of detection for N-GoAstV was 33.4 copies/μL. No cross-reactivity was observed with other goose-origin viruses. Intra-assay and inter-assay variability were ≤1.36% and 2.34%, respectively. N-GoAstV was detected in both field samples, embryos and newly hatched goslings by qRT-PCR assay, provided the view that N-GoAstV may be both horizontally and vertically transmitted. The established qRT-PCR method showed high specificity, sensitivity, and reproducibility, which can be used in future investigations on the pathogenesis and epidemiology of N-GoAstV.
•We established a TaqMan real-time RT-PCR method for detection of novel goose astrovirus (N-GoAstV).•The method showed high sensitivity, specificity and reproducibility for detection of N-GoAstV.•This study provided the view that N-GoAstV may be possible vertically transmitted. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0882-4010 1096-1208 1096-1208 |
DOI: | 10.1016/j.micpath.2019.103766 |