A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity

Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 269; p. 125469
Main Authors Zhao, Yu-Jie, Shen, Ping-Fan, Fu, Jing-Hao, Yang, Feng-Rui, Chen, Zeng-Ping, Yu, Ru-Qin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN0039-9140
1873-3573
1873-3573
DOI10.1016/j.talanta.2023.125469

Cover

Loading…
Abstract Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients. [Display omitted] •A dual-signal nanosensor was developed for imaging of telomerase in living cells.•Au@Ag nanoparticles served as fluorescence quenching and SERS enhancing substrate.•The results of the fluorescence and SERS channels can provide mutual confirmation.•The SERS channel of the nanosensor can help identify false positive results.
AbstractList Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.
Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.
Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients. [Display omitted] •A dual-signal nanosensor was developed for imaging of telomerase in living cells.•Au@Ag nanoparticles served as fluorescence quenching and SERS enhancing substrate.•The results of the fluorescence and SERS channels can provide mutual confirmation.•The SERS channel of the nanosensor can help identify false positive results.
ArticleNumber 125469
Author Zhao, Yu-Jie
Chen, Zeng-Ping
Yang, Feng-Rui
Yu, Ru-Qin
Fu, Jing-Hao
Shen, Ping-Fan
Author_xml – sequence: 1
  givenname: Yu-Jie
  surname: Zhao
  fullname: Zhao, Yu-Jie
– sequence: 2
  givenname: Ping-Fan
  surname: Shen
  fullname: Shen, Ping-Fan
– sequence: 3
  givenname: Jing-Hao
  surname: Fu
  fullname: Fu, Jing-Hao
– sequence: 4
  givenname: Feng-Rui
  surname: Yang
  fullname: Yang, Feng-Rui
– sequence: 5
  givenname: Zeng-Ping
  orcidid: 0000-0001-9194-2455
  surname: Chen
  fullname: Chen, Zeng-Ping
  email: zpchen@hnu.edu.cn
– sequence: 6
  givenname: Ru-Qin
  surname: Yu
  fullname: Yu, Ru-Qin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38043337$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVISTZpfkKKjr14O_b4S_RQQkg_IFBo2rOQ5bHRIkupJCfsv6_NbnvoZU86zPMOo_e5YufOO2LsNodtDnn9YbdNyiqX1LaAArd5UZW1OGObvG0ww6rBc7YBQJGJvIRLdhXjDmAhAS_YJbZQImKzYa93PKkwUspSMONIgXo-2NkHipqcpuzp4ccT72dls2hGpyx3yvks7mOiiQ8-8EDLLJmJuJnUaNzI_cCNS0Fpsna2KvBE1k8UVCSudDIvJu3fsjeDspFuju81-_X54ef91-zx-5dv93ePmUbRpkzU2JEQTVOpjqCvqS2oqTuotBaAbVE21A0C-r5GqquhB6z00FWANSrRth1es_eHvc_B_54pJjmZuB6mHPk5SoQSsMGixpNo0YqmXNrFFX13ROduol4-h-XvYS__9roA1QHQwccYaPiH5CBXf3Inj_7k6k8e_C25j__ltEkqGb_2aezJ9KdDmpZGXwwFGbVZLfYmkE6y9-bEhj80CrrD
CitedBy_id crossref_primary_10_1016_j_talanta_2023_125557
crossref_primary_10_3390_chemosensors13010017
Cites_doi 10.1016/j.talanta.2023.124408
10.1002/adfm.202208028
10.7150/thno.18930
10.3390/cancers11040553
10.1016/j.yexmp.2021.104640
10.1016/j.bios.2022.114724
10.1021/acs.analchem.0c01864
10.1021/acsnano.0c10844
10.1039/df9511100055
10.1038/physci241020a0
10.1002/anie.201908154
10.1038/s41568-022-00491-0
10.1039/D2SC03881A
10.1021/acsami.2c01063
10.1038/s41388-020-01405-w
10.1002/cbf.3687
10.1021/acs.chemrev.7b00668
10.3390/cells10071699
10.1021/acsami.0c13691
10.1186/s12935-021-02085-6
10.1021/acssensors.0c01487
10.1016/j.bios.2022.114059
10.1002/anie.201913375
10.1158/0008-5472.CAN-18-3594
10.1021/acsami.0c13925
10.3390/jpm12020275
10.1021/ac0702084
10.7150/thno.27680
10.1021/acssensors.2c02570
10.1021/acsnano.2c03914
10.1021/acs.analchem.9b03410
10.1021/acs.analchem.9b01603
10.1021/acs.analchem.9b00480
10.1021/acssensors.0c00307
10.1021/acs.analchem.0c03746
10.1016/j.bios.2021.113891
10.1021/acs.analchem.1c00833
10.1002/anie.202001598
10.1016/j.talanta.2021.122763
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.talanta.2023.125469
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 38043337
10_1016_j_talanta_2023_125469
S0039914023012201
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SSH
WUQ
XOL
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-963be99775abe0d6e82e76b05cc9038247ebf90dd63e65fd035cfb50363a988b3
IEDL.DBID .~1
ISSN 0039-9140
1873-3573
IngestDate Fri Jul 11 04:07:07 EDT 2025
Fri Jul 11 07:28:42 EDT 2025
Wed Feb 19 02:09:45 EST 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 03:44:19 EDT 2025
Sat Sep 21 16:00:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluorescence
Live-cell imaging
Dual-signal nano-system
SERS
Telomerase activity
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-963be99775abe0d6e82e76b05cc9038247ebf90dd63e65fd035cfb50363a988b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9194-2455
PMID 38043337
PQID 2897487333
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040373263
proquest_miscellaneous_2897487333
pubmed_primary_38043337
crossref_primary_10_1016_j_talanta_2023_125469
crossref_citationtrail_10_1016_j_talanta_2023_125469
elsevier_sciencedirect_doi_10_1016_j_talanta_2023_125469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
2024-Mar-01
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Tan, Zhan, Lin, Fan, Xiao, Li, Liao, Huang (bib8) 2018; 8
Hu, Li, Tong, Wang, Chen (bib31) 2021; 235
Luo, Yin, Lu, Zhou, Shao, Bao, Wang, Qiu, Yu (bib2) 2021; 21
Laskowski, Biederstädt, Rezvani (bib3) 2020; 22
Shen, Zhang, Cai, Wang, Zhang, Machuki, Cui, Li, Gao (bib16) 2020; 12
Guterres, Villanueva (bib9) 2020; 39
He, Hua, Zhang, Wang, Chen, Zhou (bib30) 2022; 32
Jackson, Bavelaar, Waghorn, Gill, El-Sagheer, Brown, Tarsounas, Vallis (bib15) 2019; 79
Liu, Huo, Deng, Li, Li, Huang, Ren, Gao (bib34) 2022; 201
Dong, Song, Chao, Xiong, Fang, Zhang, Zhu, Zhang, Wang (bib17) 2022; 205
de Albuquerque, Schultz (bib23) 2020; 92
Li, Huo, Wu, Chen, Su, Zhang, Song, Yang (bib29) 2023; 10
Zong, Xu, Xu, Wei, Ma, Zheng, Hu, Ren (bib25) 2018; 118
He, Han, Bi, Song, Niu, Zhou, Zhang (bib37) 2021; 15
Turkevich, Stevenson, Hillier (bib38) 1951; 11
Frens (bib39) 1973; 241
Zhu, Deng, Liu, Li, Lin, Ye (bib22) 2022; 14
Li, Lin, Paidi, Mesyngier, Preheim, Barman (bib32) 2020; 5
Zhang, Lou, Xia (bib7) 2017; 7
Huang, Zhu, Ju, Lei (bib10) 2019; 91
Zeng, Guo, Li, Fu, Chen, Wu, Zhang, Chen, Ding (bib14) 2022; 217
Yang, Chen, Zhao, Liu, Guo, Ju (bib27) 2022; 13
Lin, Graziotto, Lay, New (bib33) 2020; 10
Zhang, Ma, Wang (bib36) 2019; 91
Fan, Bai, Liu, Xing, Zhang, Tan (bib11) 2019; 91
Dong, Fang, Xiong, Zhang, Gan, Song, Wang (bib26) 2022; 16
Zhang, de Aberasturi, Henriksen-Lacey, Langer, Liz-Marzán (bib28) 2020; 5
Bell, Charron, Cortés, Kneipp, de la Chapelle, Langer, Procházka, Tran, Schlücker (bib21) 2020; 59
Wang, Guo (bib19) 2020; 59
Liu, Ma, Jiang, Shen, Wang, Wang, Tu (bib20) 2020; 12
Rafat, Asl, Mazloumi, Movassaghpour, Farahzadi, Nejati, Charoudeh (bib12) 2022; 40
Si, Du, Li, Li, Li, Zhao, Li, Tang (bib4) 2021; 93
Wang, Zhu, Gao (bib1) 2021; 120
Liu, Wang, Meng, Chen, Chen, Wang, Dou, Liu, Lu (bib24) 2023; 258
Lin, Huang, Yang, Jiang, Xing, Li, Lu, Yang (bib18) 2020; 92
Haiss, Thanh, Aveyard, Fernig (bib40) 2007; 79
Sasaki, Osaki, Okada (bib5) 2019; 11
Naeem, Anees, Naqvi, Loh (bib6) 2022; 12
Bai, Chen, Cao, Zhao, Xue, Yu, Fan, Zhao (bib13) 2020; 59
Chen, Xin, Xu, Lv, Qian, Li (bib35) 2023; 8
Zhang (10.1016/j.talanta.2023.125469_bib28) 2020; 5
He (10.1016/j.talanta.2023.125469_bib30) 2022; 32
Laskowski (10.1016/j.talanta.2023.125469_bib3) 2020; 22
Zhu (10.1016/j.talanta.2023.125469_bib22) 2022; 14
Jackson (10.1016/j.talanta.2023.125469_bib15) 2019; 79
Liu (10.1016/j.talanta.2023.125469_bib24) 2023; 258
Li (10.1016/j.talanta.2023.125469_bib29) 2023; 10
Liu (10.1016/j.talanta.2023.125469_bib20) 2020; 12
Yang (10.1016/j.talanta.2023.125469_bib27) 2022; 13
Shen (10.1016/j.talanta.2023.125469_bib16) 2020; 12
Lin (10.1016/j.talanta.2023.125469_bib18) 2020; 92
Chen (10.1016/j.talanta.2023.125469_bib35) 2023; 8
Rafat (10.1016/j.talanta.2023.125469_bib12) 2022; 40
Hu (10.1016/j.talanta.2023.125469_bib31) 2021; 235
Naeem (10.1016/j.talanta.2023.125469_bib6) 2022; 12
Luo (10.1016/j.talanta.2023.125469_bib2) 2021; 21
Haiss (10.1016/j.talanta.2023.125469_bib40) 2007; 79
Si (10.1016/j.talanta.2023.125469_bib4) 2021; 93
Huang (10.1016/j.talanta.2023.125469_bib10) 2019; 91
Dong (10.1016/j.talanta.2023.125469_bib17) 2022; 205
Wang (10.1016/j.talanta.2023.125469_bib1) 2021; 120
Lin (10.1016/j.talanta.2023.125469_bib33) 2020; 10
Zhang (10.1016/j.talanta.2023.125469_bib36) 2019; 91
Bell (10.1016/j.talanta.2023.125469_bib21) 2020; 59
Dong (10.1016/j.talanta.2023.125469_bib26) 2022; 16
Zeng (10.1016/j.talanta.2023.125469_bib14) 2022; 217
Bai (10.1016/j.talanta.2023.125469_bib13) 2020; 59
Zong (10.1016/j.talanta.2023.125469_bib25) 2018; 118
He (10.1016/j.talanta.2023.125469_bib37) 2021; 15
Zhao (10.1016/j.talanta.2023.125469_bib8) 2018; 8
de Albuquerque (10.1016/j.talanta.2023.125469_bib23) 2020; 92
Fan (10.1016/j.talanta.2023.125469_bib11) 2019; 91
Turkevich (10.1016/j.talanta.2023.125469_bib38) 1951; 11
Sasaki (10.1016/j.talanta.2023.125469_bib5) 2019; 11
Wang (10.1016/j.talanta.2023.125469_bib19) 2020; 59
Zhang (10.1016/j.talanta.2023.125469_bib7) 2017; 7
Li (10.1016/j.talanta.2023.125469_bib32) 2020; 5
Guterres (10.1016/j.talanta.2023.125469_bib9) 2020; 39
Liu (10.1016/j.talanta.2023.125469_bib34) 2022; 201
Frens (10.1016/j.talanta.2023.125469_bib39) 1973; 241
References_xml – volume: 12
  start-page: 45332
  year: 2020
  end-page: 45341
  ident: bib20
  article-title: Large scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 258
  year: 2023
  ident: bib24
  article-title: Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes
  publication-title: Talanta
– volume: 12
  start-page: 275
  year: 2022
  ident: bib6
  article-title: A comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis
  publication-title: J. Personalized Med.
– volume: 39
  start-page: 5811
  year: 2020
  end-page: 5824
  ident: bib9
  article-title: Targeting telomerase for cancer therapy
  publication-title: Oncogene
– volume: 91
  start-page: 13143
  year: 2019
  end-page: 13151
  ident: bib11
  article-title: Monitoring telomerase activity in living cells with high sensitivity using cascade amplification reaction-based nanoprobe
  publication-title: Anal. Chem.
– volume: 13
  start-page: 9701
  year: 2022
  end-page: 9705
  ident: bib27
  article-title: O-GlcNAcylation mapping of single living cells by in situ quantitative SERS imaging
  publication-title: Chem. Sci.
– volume: 59
  start-page: 5454
  year: 2020
  end-page: 5462
  ident: bib21
  article-title: Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice
  publication-title: Angew. Chem. Int. Ed.
– volume: 235
  year: 2021
  ident: bib31
  article-title: DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs
  publication-title: Talanta
– volume: 91
  start-page: 6600
  year: 2019
  end-page: 6607
  ident: bib36
  article-title: Surface-enhanced Raman scattering-fluorescence dual-mode nanosensors for quantitative detection of cytochrome c in living cells
  publication-title: Anal. Chem.
– volume: 11
  start-page: 553
  year: 2019
  ident: bib5
  article-title: MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma
  publication-title: Cancers
– volume: 79
  start-page: 4627
  year: 2019
  end-page: 4637
  ident: bib15
  article-title: Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells
  publication-title: Cancer Res.
– volume: 40
  start-page: 199
  year: 2022
  end-page: 212
  ident: bib12
  article-title: Telomerase-based therapies in haematological malignancies
  publication-title: Cell Biochem. Funct.
– volume: 16
  start-page: 14055
  year: 2022
  end-page: 14065
  ident: bib26
  article-title: Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells
  publication-title: ACS Nano
– volume: 7
  start-page: 1847
  year: 2017
  end-page: 1862
  ident: bib7
  article-title: Advances in the detection of telomerase activity using isothermal amplification
  publication-title: Theranostics
– volume: 14
  start-page: 8876
  year: 2022
  end-page: 8887
  ident: bib22
  article-title: Surface-enhanced Raman scattering bioimaging with an ultrahigh signal-to-background ratio under ambient light
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 5625
  year: 2018
  end-page: 5633
  ident: bib8
  article-title: Cascaded electrochemiluminescence signal amplifier for the detection of telomerase activity from tumor cells and tissues
  publication-title: Theranostics
– volume: 12
  start-page: 53624
  year: 2020
  end-page: 53633
  ident: bib16
  article-title: Carbon nanocage/Fe3O4/DNA-based magnetically targeted intracellular imaging of telomerase via catalyzed hairpin assembly and photodynamic-photothermal combination therapy of tumor cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 557
  year: 2020
  end-page: 575
  ident: bib3
  article-title: Natural killer cells in antitumour adoptive cell immunotherapy
  publication-title: Nat. Rev. Cancer
– volume: 91
  start-page: 6981
  year: 2019
  end-page: 6985
  ident: bib10
  article-title: Telomerase triggered DNA walker with a superhairpin structure for human telomerase activity sensing
  publication-title: Anal. Chem.
– volume: 118
  start-page: 4946
  year: 2018
  end-page: 4980
  ident: bib25
  article-title: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges
  publication-title: Chem. Rev.
– volume: 79
  start-page: 4215
  year: 2007
  end-page: 4221
  ident: bib40
  article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra
  publication-title: Anal. Chem.
– volume: 120
  year: 2021
  ident: bib1
  article-title: New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects
  publication-title: Exp. Mol. Pathol.
– volume: 92
  start-page: 9389
  year: 2020
  end-page: 9398
  ident: bib23
  article-title: Super-resolution surface enhanced Raman scattering imaging of single particles in cells
  publication-title: Anal. Chem.
– volume: 92
  start-page: 15179
  year: 2020
  end-page: 15186
  ident: bib18
  article-title: Functional self-assembled DNA nanohydrogels for specific telomerase activity imaging and telomerase-activated antitumor gene therapy
  publication-title: Anal. Chem.
– volume: 10
  year: 2023
  ident: bib29
  article-title: Design and synthesis of SERS materials for in vivo molecular imaging and biosensing
  publication-title: Adv. Sci.
– volume: 201
  year: 2022
  ident: bib34
  article-title: A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin
  publication-title: Biosens. Bioelectron.
– volume: 59
  start-page: 13267
  year: 2020
  end-page: 13272
  ident: bib13
  article-title: Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination
  publication-title: Angew. Chem. Int. Ed.
– volume: 241
  start-page: 20
  year: 1973
  end-page: 22
  ident: bib39
  article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions
  publication-title: Nat. Phys.
– volume: 59
  start-page: 4231
  year: 2020
  end-page: 4239
  ident: bib19
  article-title: SERS activity of semiconductors: crystalline and amorphous nanomaterials
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  year: 2022
  ident: bib30
  article-title: SERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapy
  publication-title: Adv. Funct. Mater.
– volume: 205
  year: 2022
  ident: bib17
  article-title: Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 388
  year: 2023
  end-page: 396
  ident: bib35
  article-title: Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol
  publication-title: ACS Sens.
– volume: 93
  start-page: 10477
  year: 2021
  end-page: 10486
  ident: bib4
  article-title: Sputum-based tumor fluid biopsy: isolation and high-throughput single-cell analysis of exfoliated tumor cells for lung cancer diagnosis
  publication-title: Anal. Chem.
– volume: 10
  start-page: 1699
  year: 2020
  ident: bib33
  article-title: A bimodal fluorescence Raman probe for cellular imaging
  publication-title: Cells
– volume: 11
  start-page: 55
  year: 1951
  end-page: 75
  ident: bib38
  article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold
  publication-title: Discuss. Faraday Soc.
– volume: 21
  start-page: 386
  year: 2021
  ident: bib2
  article-title: Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment
  publication-title: Cancer Cell Int.
– volume: 15
  start-page: 6961
  year: 2021
  end-page: 6976
  ident: bib37
  article-title: Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy
  publication-title: ACS Nano
– volume: 5
  start-page: 1419
  year: 2020
  end-page: 1426
  ident: bib32
  article-title: A fluorescence and surface-enhanced Raman spectroscopic dual-modal aptasensor for sensitive detection of cyanotoxins
  publication-title: ACS Sens.
– volume: 5
  start-page: 3194
  year: 2020
  end-page: 3206
  ident: bib28
  article-title: Live cell surface enhanced Raman spectroscopy imaging of intracellular pH: from two dimensions to three dimensions
  publication-title: ACS Sens.
– volume: 217
  year: 2022
  ident: bib14
  article-title: A simple and smart AND-gate DNA nanoprobe for correlated enzymes tracking and cell-selective imaging
  publication-title: Biosens. Bioelectron.
– volume: 258
  year: 2023
  ident: 10.1016/j.talanta.2023.125469_bib24
  article-title: Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124408
– volume: 32
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib30
  article-title: SERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208028
– volume: 7
  start-page: 1847
  year: 2017
  ident: 10.1016/j.talanta.2023.125469_bib7
  article-title: Advances in the detection of telomerase activity using isothermal amplification
  publication-title: Theranostics
  doi: 10.7150/thno.18930
– volume: 11
  start-page: 553
  year: 2019
  ident: 10.1016/j.talanta.2023.125469_bib5
  article-title: MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma
  publication-title: Cancers
  doi: 10.3390/cancers11040553
– volume: 120
  year: 2021
  ident: 10.1016/j.talanta.2023.125469_bib1
  article-title: New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2021.104640
– volume: 10
  year: 2023
  ident: 10.1016/j.talanta.2023.125469_bib29
  article-title: Design and synthesis of SERS materials for in vivo molecular imaging and biosensing
  publication-title: Adv. Sci.
– volume: 217
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib14
  article-title: A simple and smart AND-gate DNA nanoprobe for correlated enzymes tracking and cell-selective imaging
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114724
– volume: 92
  start-page: 9389
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib23
  article-title: Super-resolution surface enhanced Raman scattering imaging of single particles in cells
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c01864
– volume: 15
  start-page: 6961
  year: 2021
  ident: 10.1016/j.talanta.2023.125469_bib37
  article-title: Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10844
– volume: 11
  start-page: 55
  year: 1951
  ident: 10.1016/j.talanta.2023.125469_bib38
  article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9511100055
– volume: 241
  start-page: 20
  year: 1973
  ident: 10.1016/j.talanta.2023.125469_bib39
  article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions
  publication-title: Nat. Phys.
  doi: 10.1038/physci241020a0
– volume: 59
  start-page: 5454
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib21
  article-title: Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908154
– volume: 22
  start-page: 557
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib3
  article-title: Natural killer cells in antitumour adoptive cell immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-022-00491-0
– volume: 13
  start-page: 9701
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib27
  article-title: O-GlcNAcylation mapping of single living cells by in situ quantitative SERS imaging
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC03881A
– volume: 14
  start-page: 8876
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib22
  article-title: Surface-enhanced Raman scattering bioimaging with an ultrahigh signal-to-background ratio under ambient light
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c01063
– volume: 39
  start-page: 5811
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib9
  article-title: Targeting telomerase for cancer therapy
  publication-title: Oncogene
  doi: 10.1038/s41388-020-01405-w
– volume: 40
  start-page: 199
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib12
  article-title: Telomerase-based therapies in haematological malignancies
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.3687
– volume: 118
  start-page: 4946
  year: 2018
  ident: 10.1016/j.talanta.2023.125469_bib25
  article-title: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00668
– volume: 10
  start-page: 1699
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib33
  article-title: A bimodal fluorescence Raman probe for cellular imaging
  publication-title: Cells
  doi: 10.3390/cells10071699
– volume: 12
  start-page: 45332
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib20
  article-title: Large scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13691
– volume: 21
  start-page: 386
  year: 2021
  ident: 10.1016/j.talanta.2023.125469_bib2
  article-title: Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-021-02085-6
– volume: 5
  start-page: 3194
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib28
  article-title: Live cell surface enhanced Raman spectroscopy imaging of intracellular pH: from two dimensions to three dimensions
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01487
– volume: 205
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib17
  article-title: Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114059
– volume: 59
  start-page: 4231
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib19
  article-title: SERS activity of semiconductors: crystalline and amorphous nanomaterials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913375
– volume: 79
  start-page: 4627
  year: 2019
  ident: 10.1016/j.talanta.2023.125469_bib15
  article-title: Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-3594
– volume: 12
  start-page: 53624
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib16
  article-title: Carbon nanocage/Fe3O4/DNA-based magnetically targeted intracellular imaging of telomerase via catalyzed hairpin assembly and photodynamic-photothermal combination therapy of tumor cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13925
– volume: 12
  start-page: 275
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib6
  article-title: A comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis
  publication-title: J. Personalized Med.
  doi: 10.3390/jpm12020275
– volume: 79
  start-page: 4215
  year: 2007
  ident: 10.1016/j.talanta.2023.125469_bib40
  article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra
  publication-title: Anal. Chem.
  doi: 10.1021/ac0702084
– volume: 8
  start-page: 5625
  year: 2018
  ident: 10.1016/j.talanta.2023.125469_bib8
  article-title: Cascaded electrochemiluminescence signal amplifier for the detection of telomerase activity from tumor cells and tissues
  publication-title: Theranostics
  doi: 10.7150/thno.27680
– volume: 8
  start-page: 388
  year: 2023
  ident: 10.1016/j.talanta.2023.125469_bib35
  article-title: Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c02570
– volume: 16
  start-page: 14055
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib26
  article-title: Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03914
– volume: 91
  start-page: 13143
  year: 2019
  ident: 10.1016/j.talanta.2023.125469_bib11
  article-title: Monitoring telomerase activity in living cells with high sensitivity using cascade amplification reaction-based nanoprobe
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03410
– volume: 91
  start-page: 6981
  year: 2019
  ident: 10.1016/j.talanta.2023.125469_bib10
  article-title: Telomerase triggered DNA walker with a superhairpin structure for human telomerase activity sensing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01603
– volume: 91
  start-page: 6600
  year: 2019
  ident: 10.1016/j.talanta.2023.125469_bib36
  article-title: Surface-enhanced Raman scattering-fluorescence dual-mode nanosensors for quantitative detection of cytochrome c in living cells
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00480
– volume: 5
  start-page: 1419
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib32
  article-title: A fluorescence and surface-enhanced Raman spectroscopic dual-modal aptasensor for sensitive detection of cyanotoxins
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c00307
– volume: 92
  start-page: 15179
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib18
  article-title: Functional self-assembled DNA nanohydrogels for specific telomerase activity imaging and telomerase-activated antitumor gene therapy
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03746
– volume: 201
  year: 2022
  ident: 10.1016/j.talanta.2023.125469_bib34
  article-title: A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113891
– volume: 93
  start-page: 10477
  year: 2021
  ident: 10.1016/j.talanta.2023.125469_bib4
  article-title: Sputum-based tumor fluid biopsy: isolation and high-throughput single-cell analysis of exfoliated tumor cells for lung cancer diagnosis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00833
– volume: 59
  start-page: 13267
  year: 2020
  ident: 10.1016/j.talanta.2023.125469_bib13
  article-title: Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001598
– volume: 235
  year: 2021
  ident: 10.1016/j.talanta.2023.125469_bib31
  article-title: DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122763
SSID ssj0002303
Score 2.4494624
Snippet Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125469
SubjectTerms biocompatibility
biomarkers
biomedical research
DNA
Dual-signal nano-system
Fluorescence
Live-cell imaging
nanomaterials
photobleaching
prognosis
rhodamines
SERS
telomerase
Telomerase activity
therapeutics
Title A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity
URI https://dx.doi.org/10.1016/j.talanta.2023.125469
https://www.ncbi.nlm.nih.gov/pubmed/38043337
https://www.proquest.com/docview/2897487333
https://www.proquest.com/docview/3040373263
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcGgvVaEvykOu1Kt3HTtO7ONqBVpAcGiLxM2KHbtatCQIsuLGb2cmDxCH1Uock4yjkWcyD2fmG0J-JzyCo5EFS6LOWGq0Z0Z4wUJmSi4LbmKbKF5cZvOr9OxaXY_IbOiFwbLK3vZ3Nr211v2dSb-bk7vFAnt8wblCfgBBdCJE28OVpjlq-fjptcwDnvbAu4Yh9WsXz-QGQQaBf4QfEnKcIDS8Weef1sWfrR86-Uw-9QEknXY87pBRqHbJh9kwt-0LeZzSrrybNZB5_8dZnDQuV_V9C9zkA1jQP38ptmAxLN6Ad1VFVbMO0plCDEshjlwyHDpPF7ftECNaR7rAU2A85se6VdqEZY3HWQ-BYmcEDqD4Sq5Ojv_N5qwfr8C8NLph8Om5YCD-U4ULvMyCFiHPHFfeGy61SPPgouFlmcmQqQiiUz46hX9-C6O1k9_IVlVX4QehToXEOW98hOyulEUB5JmIXEQVlQh8j6TDplrfY4_jCIylHYrMbmwvC4uysJ0s9sj4ZdldB76xaYEeJGbfaJEFB7Fp6a9BwhYEhvtZVKFePVhISXNI66SU62kk2EKZQygMNN879XjhWGoEiZP5z_czt08-wlXa1b4dkK3mfhUOIRhq3FGr7Udke3p6Pr98Bmh8Cpw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9NBdhr3XPTVgVzWyZNnSMQhWpGubw9YCvQmWLA0pUrtoHfTvl7TlDDsEBXa1KUMWZfKjTH4k5HvGIzgaWbEs6oLlRntmhBcsFKbmsuIm9oHi-bJYXOY_r9TVHpmPtTCYVpls_2DTe2udrkzTak5vVyus8QXnCvEBgOhMCKzh2kd2KjUh-7OT08Vya5BBIHHvGoYD_hbyTK-RZxBeARmIhDzKkB3e7HJRuyBo74qOX5DnCUPS2TDNl2QvNK_IwXxs3faaPMzokOHNOgi-_2A7ThrXm_au527yAYzor98Uq7AY5m_As5qqadnA6kwBxlKAkmuGfefp6qbvY0TbSFd4EIwn_Zi6SruwbvFE6z5QLI7AHhRvyOXxj4v5gqUOC8xLozsGX58LBiCgqlzgdRG0CGXhuPLecKlFXgYXDa_rQoZCRdCe8tEp_PlbGa2dfEsmTduE94Q6FTLnvPERArxaVhWIFyJyEVVUIvBDko-Lan2iH8cuGGs75pld26QLi7qwgy4OydF22O3Av_HUAD1qzP6zkSz4iKeGfhs1bEFhuJ5VE9rNvYWotITITkq5W0aCOZQloGGQeTdsj-2MpUaeOFl--P_JfSUHi4vzM3t2sjz9SJ7BnXxIhftEJt3dJnwGbNS5L2nvPwJ7uQ1N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+target-triggered+fluorescence-SERS+dual-signal+nano-system+for+real-time+imaging+of+intracellular+telomerase+activity&rft.jtitle=Talanta+%28Oxford%29&rft.au=Zhao%2C+Yu-Jie&rft.au=Shen%2C+Ping-Fan&rft.au=Fu%2C+Jing-Hao&rft.au=Yang%2C+Feng-Rui&rft.date=2024-03-01&rft.issn=0039-9140&rft.volume=269&rft.spage=125469&rft_id=info:doi/10.1016%2Fj.talanta.2023.125469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_talanta_2023_125469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon