A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity
Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of...
Saved in:
Published in | Talanta (Oxford) Vol. 269; p. 125469 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-9140 1873-3573 1873-3573 |
DOI | 10.1016/j.talanta.2023.125469 |
Cover
Loading…
Abstract | Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.
[Display omitted]
•A dual-signal nanosensor was developed for imaging of telomerase in living cells.•Au@Ag nanoparticles served as fluorescence quenching and SERS enhancing substrate.•The results of the fluorescence and SERS channels can provide mutual confirmation.•The SERS channel of the nanosensor can help identify false positive results. |
---|---|
AbstractList | Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients. Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients. Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients. [Display omitted] •A dual-signal nanosensor was developed for imaging of telomerase in living cells.•Au@Ag nanoparticles served as fluorescence quenching and SERS enhancing substrate.•The results of the fluorescence and SERS channels can provide mutual confirmation.•The SERS channel of the nanosensor can help identify false positive results. |
ArticleNumber | 125469 |
Author | Zhao, Yu-Jie Chen, Zeng-Ping Yang, Feng-Rui Yu, Ru-Qin Fu, Jing-Hao Shen, Ping-Fan |
Author_xml | – sequence: 1 givenname: Yu-Jie surname: Zhao fullname: Zhao, Yu-Jie – sequence: 2 givenname: Ping-Fan surname: Shen fullname: Shen, Ping-Fan – sequence: 3 givenname: Jing-Hao surname: Fu fullname: Fu, Jing-Hao – sequence: 4 givenname: Feng-Rui surname: Yang fullname: Yang, Feng-Rui – sequence: 5 givenname: Zeng-Ping orcidid: 0000-0001-9194-2455 surname: Chen fullname: Chen, Zeng-Ping email: zpchen@hnu.edu.cn – sequence: 6 givenname: Ru-Qin surname: Yu fullname: Yu, Ru-Qin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38043337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVISTZpfkKKjr14O_b4S_RQQkg_IFBo2rOQ5bHRIkupJCfsv6_NbnvoZU86zPMOo_e5YufOO2LsNodtDnn9YbdNyiqX1LaAArd5UZW1OGObvG0ww6rBc7YBQJGJvIRLdhXjDmAhAS_YJbZQImKzYa93PKkwUspSMONIgXo-2NkHipqcpuzp4ccT72dls2hGpyx3yvks7mOiiQ8-8EDLLJmJuJnUaNzI_cCNS0Fpsna2KvBE1k8UVCSudDIvJu3fsjeDspFuju81-_X54ef91-zx-5dv93ePmUbRpkzU2JEQTVOpjqCvqS2oqTuotBaAbVE21A0C-r5GqquhB6z00FWANSrRth1es_eHvc_B_54pJjmZuB6mHPk5SoQSsMGixpNo0YqmXNrFFX13ROduol4-h-XvYS__9roA1QHQwccYaPiH5CBXf3Inj_7k6k8e_C25j__ltEkqGb_2aezJ9KdDmpZGXwwFGbVZLfYmkE6y9-bEhj80CrrD |
CitedBy_id | crossref_primary_10_1016_j_talanta_2023_125557 crossref_primary_10_3390_chemosensors13010017 |
Cites_doi | 10.1016/j.talanta.2023.124408 10.1002/adfm.202208028 10.7150/thno.18930 10.3390/cancers11040553 10.1016/j.yexmp.2021.104640 10.1016/j.bios.2022.114724 10.1021/acs.analchem.0c01864 10.1021/acsnano.0c10844 10.1039/df9511100055 10.1038/physci241020a0 10.1002/anie.201908154 10.1038/s41568-022-00491-0 10.1039/D2SC03881A 10.1021/acsami.2c01063 10.1038/s41388-020-01405-w 10.1002/cbf.3687 10.1021/acs.chemrev.7b00668 10.3390/cells10071699 10.1021/acsami.0c13691 10.1186/s12935-021-02085-6 10.1021/acssensors.0c01487 10.1016/j.bios.2022.114059 10.1002/anie.201913375 10.1158/0008-5472.CAN-18-3594 10.1021/acsami.0c13925 10.3390/jpm12020275 10.1021/ac0702084 10.7150/thno.27680 10.1021/acssensors.2c02570 10.1021/acsnano.2c03914 10.1021/acs.analchem.9b03410 10.1021/acs.analchem.9b01603 10.1021/acs.analchem.9b00480 10.1021/acssensors.0c00307 10.1021/acs.analchem.0c03746 10.1016/j.bios.2021.113891 10.1021/acs.analchem.1c00833 10.1002/anie.202001598 10.1016/j.talanta.2021.122763 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.talanta.2023.125469 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 38043337 10_1016_j_talanta_2023_125469 S0039914023012201 |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAQXK AATTM AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SSH WUQ XOL NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-963be99775abe0d6e82e76b05cc9038247ebf90dd63e65fd035cfb50363a988b3 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Jul 11 04:07:07 EDT 2025 Fri Jul 11 07:28:42 EDT 2025 Wed Feb 19 02:09:45 EST 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 03:44:19 EDT 2025 Sat Sep 21 16:00:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence Live-cell imaging Dual-signal nano-system SERS Telomerase activity |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-963be99775abe0d6e82e76b05cc9038247ebf90dd63e65fd035cfb50363a988b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9194-2455 |
PMID | 38043337 |
PQID | 2897487333 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3040373263 proquest_miscellaneous_2897487333 pubmed_primary_38043337 crossref_primary_10_1016_j_talanta_2023_125469 crossref_citationtrail_10_1016_j_talanta_2023_125469 elsevier_sciencedirect_doi_10_1016_j_talanta_2023_125469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 2024-03-00 2024-Mar-01 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Tan, Zhan, Lin, Fan, Xiao, Li, Liao, Huang (bib8) 2018; 8 Hu, Li, Tong, Wang, Chen (bib31) 2021; 235 Luo, Yin, Lu, Zhou, Shao, Bao, Wang, Qiu, Yu (bib2) 2021; 21 Laskowski, Biederstädt, Rezvani (bib3) 2020; 22 Shen, Zhang, Cai, Wang, Zhang, Machuki, Cui, Li, Gao (bib16) 2020; 12 Guterres, Villanueva (bib9) 2020; 39 He, Hua, Zhang, Wang, Chen, Zhou (bib30) 2022; 32 Jackson, Bavelaar, Waghorn, Gill, El-Sagheer, Brown, Tarsounas, Vallis (bib15) 2019; 79 Liu, Huo, Deng, Li, Li, Huang, Ren, Gao (bib34) 2022; 201 Dong, Song, Chao, Xiong, Fang, Zhang, Zhu, Zhang, Wang (bib17) 2022; 205 de Albuquerque, Schultz (bib23) 2020; 92 Li, Huo, Wu, Chen, Su, Zhang, Song, Yang (bib29) 2023; 10 Zong, Xu, Xu, Wei, Ma, Zheng, Hu, Ren (bib25) 2018; 118 He, Han, Bi, Song, Niu, Zhou, Zhang (bib37) 2021; 15 Turkevich, Stevenson, Hillier (bib38) 1951; 11 Frens (bib39) 1973; 241 Zhu, Deng, Liu, Li, Lin, Ye (bib22) 2022; 14 Li, Lin, Paidi, Mesyngier, Preheim, Barman (bib32) 2020; 5 Zhang, Lou, Xia (bib7) 2017; 7 Huang, Zhu, Ju, Lei (bib10) 2019; 91 Zeng, Guo, Li, Fu, Chen, Wu, Zhang, Chen, Ding (bib14) 2022; 217 Yang, Chen, Zhao, Liu, Guo, Ju (bib27) 2022; 13 Lin, Graziotto, Lay, New (bib33) 2020; 10 Zhang, Ma, Wang (bib36) 2019; 91 Fan, Bai, Liu, Xing, Zhang, Tan (bib11) 2019; 91 Dong, Fang, Xiong, Zhang, Gan, Song, Wang (bib26) 2022; 16 Zhang, de Aberasturi, Henriksen-Lacey, Langer, Liz-Marzán (bib28) 2020; 5 Bell, Charron, Cortés, Kneipp, de la Chapelle, Langer, Procházka, Tran, Schlücker (bib21) 2020; 59 Wang, Guo (bib19) 2020; 59 Liu, Ma, Jiang, Shen, Wang, Wang, Tu (bib20) 2020; 12 Rafat, Asl, Mazloumi, Movassaghpour, Farahzadi, Nejati, Charoudeh (bib12) 2022; 40 Si, Du, Li, Li, Li, Zhao, Li, Tang (bib4) 2021; 93 Wang, Zhu, Gao (bib1) 2021; 120 Liu, Wang, Meng, Chen, Chen, Wang, Dou, Liu, Lu (bib24) 2023; 258 Lin, Huang, Yang, Jiang, Xing, Li, Lu, Yang (bib18) 2020; 92 Haiss, Thanh, Aveyard, Fernig (bib40) 2007; 79 Sasaki, Osaki, Okada (bib5) 2019; 11 Naeem, Anees, Naqvi, Loh (bib6) 2022; 12 Bai, Chen, Cao, Zhao, Xue, Yu, Fan, Zhao (bib13) 2020; 59 Chen, Xin, Xu, Lv, Qian, Li (bib35) 2023; 8 Zhang (10.1016/j.talanta.2023.125469_bib28) 2020; 5 He (10.1016/j.talanta.2023.125469_bib30) 2022; 32 Laskowski (10.1016/j.talanta.2023.125469_bib3) 2020; 22 Zhu (10.1016/j.talanta.2023.125469_bib22) 2022; 14 Jackson (10.1016/j.talanta.2023.125469_bib15) 2019; 79 Liu (10.1016/j.talanta.2023.125469_bib24) 2023; 258 Li (10.1016/j.talanta.2023.125469_bib29) 2023; 10 Liu (10.1016/j.talanta.2023.125469_bib20) 2020; 12 Yang (10.1016/j.talanta.2023.125469_bib27) 2022; 13 Shen (10.1016/j.talanta.2023.125469_bib16) 2020; 12 Lin (10.1016/j.talanta.2023.125469_bib18) 2020; 92 Chen (10.1016/j.talanta.2023.125469_bib35) 2023; 8 Rafat (10.1016/j.talanta.2023.125469_bib12) 2022; 40 Hu (10.1016/j.talanta.2023.125469_bib31) 2021; 235 Naeem (10.1016/j.talanta.2023.125469_bib6) 2022; 12 Luo (10.1016/j.talanta.2023.125469_bib2) 2021; 21 Haiss (10.1016/j.talanta.2023.125469_bib40) 2007; 79 Si (10.1016/j.talanta.2023.125469_bib4) 2021; 93 Huang (10.1016/j.talanta.2023.125469_bib10) 2019; 91 Dong (10.1016/j.talanta.2023.125469_bib17) 2022; 205 Wang (10.1016/j.talanta.2023.125469_bib1) 2021; 120 Lin (10.1016/j.talanta.2023.125469_bib33) 2020; 10 Zhang (10.1016/j.talanta.2023.125469_bib36) 2019; 91 Bell (10.1016/j.talanta.2023.125469_bib21) 2020; 59 Dong (10.1016/j.talanta.2023.125469_bib26) 2022; 16 Zeng (10.1016/j.talanta.2023.125469_bib14) 2022; 217 Bai (10.1016/j.talanta.2023.125469_bib13) 2020; 59 Zong (10.1016/j.talanta.2023.125469_bib25) 2018; 118 He (10.1016/j.talanta.2023.125469_bib37) 2021; 15 Zhao (10.1016/j.talanta.2023.125469_bib8) 2018; 8 de Albuquerque (10.1016/j.talanta.2023.125469_bib23) 2020; 92 Fan (10.1016/j.talanta.2023.125469_bib11) 2019; 91 Turkevich (10.1016/j.talanta.2023.125469_bib38) 1951; 11 Sasaki (10.1016/j.talanta.2023.125469_bib5) 2019; 11 Wang (10.1016/j.talanta.2023.125469_bib19) 2020; 59 Zhang (10.1016/j.talanta.2023.125469_bib7) 2017; 7 Li (10.1016/j.talanta.2023.125469_bib32) 2020; 5 Guterres (10.1016/j.talanta.2023.125469_bib9) 2020; 39 Liu (10.1016/j.talanta.2023.125469_bib34) 2022; 201 Frens (10.1016/j.talanta.2023.125469_bib39) 1973; 241 |
References_xml | – volume: 12 start-page: 45332 year: 2020 end-page: 45341 ident: bib20 article-title: Large scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity publication-title: ACS Appl. Mater. Interfaces – volume: 258 year: 2023 ident: bib24 article-title: Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes publication-title: Talanta – volume: 12 start-page: 275 year: 2022 ident: bib6 article-title: A comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis publication-title: J. Personalized Med. – volume: 39 start-page: 5811 year: 2020 end-page: 5824 ident: bib9 article-title: Targeting telomerase for cancer therapy publication-title: Oncogene – volume: 91 start-page: 13143 year: 2019 end-page: 13151 ident: bib11 article-title: Monitoring telomerase activity in living cells with high sensitivity using cascade amplification reaction-based nanoprobe publication-title: Anal. Chem. – volume: 13 start-page: 9701 year: 2022 end-page: 9705 ident: bib27 article-title: O-GlcNAcylation mapping of single living cells by in situ quantitative SERS imaging publication-title: Chem. Sci. – volume: 59 start-page: 5454 year: 2020 end-page: 5462 ident: bib21 article-title: Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice publication-title: Angew. Chem. Int. Ed. – volume: 235 year: 2021 ident: bib31 article-title: DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs publication-title: Talanta – volume: 91 start-page: 6600 year: 2019 end-page: 6607 ident: bib36 article-title: Surface-enhanced Raman scattering-fluorescence dual-mode nanosensors for quantitative detection of cytochrome c in living cells publication-title: Anal. Chem. – volume: 11 start-page: 553 year: 2019 ident: bib5 article-title: MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma publication-title: Cancers – volume: 79 start-page: 4627 year: 2019 end-page: 4637 ident: bib15 article-title: Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells publication-title: Cancer Res. – volume: 40 start-page: 199 year: 2022 end-page: 212 ident: bib12 article-title: Telomerase-based therapies in haematological malignancies publication-title: Cell Biochem. Funct. – volume: 16 start-page: 14055 year: 2022 end-page: 14065 ident: bib26 article-title: Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells publication-title: ACS Nano – volume: 7 start-page: 1847 year: 2017 end-page: 1862 ident: bib7 article-title: Advances in the detection of telomerase activity using isothermal amplification publication-title: Theranostics – volume: 14 start-page: 8876 year: 2022 end-page: 8887 ident: bib22 article-title: Surface-enhanced Raman scattering bioimaging with an ultrahigh signal-to-background ratio under ambient light publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5625 year: 2018 end-page: 5633 ident: bib8 article-title: Cascaded electrochemiluminescence signal amplifier for the detection of telomerase activity from tumor cells and tissues publication-title: Theranostics – volume: 12 start-page: 53624 year: 2020 end-page: 53633 ident: bib16 article-title: Carbon nanocage/Fe3O4/DNA-based magnetically targeted intracellular imaging of telomerase via catalyzed hairpin assembly and photodynamic-photothermal combination therapy of tumor cells publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 557 year: 2020 end-page: 575 ident: bib3 article-title: Natural killer cells in antitumour adoptive cell immunotherapy publication-title: Nat. Rev. Cancer – volume: 91 start-page: 6981 year: 2019 end-page: 6985 ident: bib10 article-title: Telomerase triggered DNA walker with a superhairpin structure for human telomerase activity sensing publication-title: Anal. Chem. – volume: 118 start-page: 4946 year: 2018 end-page: 4980 ident: bib25 article-title: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges publication-title: Chem. Rev. – volume: 79 start-page: 4215 year: 2007 end-page: 4221 ident: bib40 article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra publication-title: Anal. Chem. – volume: 120 year: 2021 ident: bib1 article-title: New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects publication-title: Exp. Mol. Pathol. – volume: 92 start-page: 9389 year: 2020 end-page: 9398 ident: bib23 article-title: Super-resolution surface enhanced Raman scattering imaging of single particles in cells publication-title: Anal. Chem. – volume: 92 start-page: 15179 year: 2020 end-page: 15186 ident: bib18 article-title: Functional self-assembled DNA nanohydrogels for specific telomerase activity imaging and telomerase-activated antitumor gene therapy publication-title: Anal. Chem. – volume: 10 year: 2023 ident: bib29 article-title: Design and synthesis of SERS materials for in vivo molecular imaging and biosensing publication-title: Adv. Sci. – volume: 201 year: 2022 ident: bib34 article-title: A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin publication-title: Biosens. Bioelectron. – volume: 59 start-page: 13267 year: 2020 end-page: 13272 ident: bib13 article-title: Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination publication-title: Angew. Chem. Int. Ed. – volume: 241 start-page: 20 year: 1973 end-page: 22 ident: bib39 article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions publication-title: Nat. Phys. – volume: 59 start-page: 4231 year: 2020 end-page: 4239 ident: bib19 article-title: SERS activity of semiconductors: crystalline and amorphous nanomaterials publication-title: Angew. Chem. Int. Ed. – volume: 32 year: 2022 ident: bib30 article-title: SERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapy publication-title: Adv. Funct. Mater. – volume: 205 year: 2022 ident: bib17 article-title: Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase publication-title: Biosens. Bioelectron. – volume: 8 start-page: 388 year: 2023 end-page: 396 ident: bib35 article-title: Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol publication-title: ACS Sens. – volume: 93 start-page: 10477 year: 2021 end-page: 10486 ident: bib4 article-title: Sputum-based tumor fluid biopsy: isolation and high-throughput single-cell analysis of exfoliated tumor cells for lung cancer diagnosis publication-title: Anal. Chem. – volume: 10 start-page: 1699 year: 2020 ident: bib33 article-title: A bimodal fluorescence Raman probe for cellular imaging publication-title: Cells – volume: 11 start-page: 55 year: 1951 end-page: 75 ident: bib38 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss. Faraday Soc. – volume: 21 start-page: 386 year: 2021 ident: bib2 article-title: Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment publication-title: Cancer Cell Int. – volume: 15 start-page: 6961 year: 2021 end-page: 6976 ident: bib37 article-title: Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy publication-title: ACS Nano – volume: 5 start-page: 1419 year: 2020 end-page: 1426 ident: bib32 article-title: A fluorescence and surface-enhanced Raman spectroscopic dual-modal aptasensor for sensitive detection of cyanotoxins publication-title: ACS Sens. – volume: 5 start-page: 3194 year: 2020 end-page: 3206 ident: bib28 article-title: Live cell surface enhanced Raman spectroscopy imaging of intracellular pH: from two dimensions to three dimensions publication-title: ACS Sens. – volume: 217 year: 2022 ident: bib14 article-title: A simple and smart AND-gate DNA nanoprobe for correlated enzymes tracking and cell-selective imaging publication-title: Biosens. Bioelectron. – volume: 258 year: 2023 ident: 10.1016/j.talanta.2023.125469_bib24 article-title: Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes publication-title: Talanta doi: 10.1016/j.talanta.2023.124408 – volume: 32 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib30 article-title: SERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208028 – volume: 7 start-page: 1847 year: 2017 ident: 10.1016/j.talanta.2023.125469_bib7 article-title: Advances in the detection of telomerase activity using isothermal amplification publication-title: Theranostics doi: 10.7150/thno.18930 – volume: 11 start-page: 553 year: 2019 ident: 10.1016/j.talanta.2023.125469_bib5 article-title: MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma publication-title: Cancers doi: 10.3390/cancers11040553 – volume: 120 year: 2021 ident: 10.1016/j.talanta.2023.125469_bib1 article-title: New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2021.104640 – volume: 10 year: 2023 ident: 10.1016/j.talanta.2023.125469_bib29 article-title: Design and synthesis of SERS materials for in vivo molecular imaging and biosensing publication-title: Adv. Sci. – volume: 217 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib14 article-title: A simple and smart AND-gate DNA nanoprobe for correlated enzymes tracking and cell-selective imaging publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114724 – volume: 92 start-page: 9389 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib23 article-title: Super-resolution surface enhanced Raman scattering imaging of single particles in cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01864 – volume: 15 start-page: 6961 year: 2021 ident: 10.1016/j.talanta.2023.125469_bib37 article-title: Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c10844 – volume: 11 start-page: 55 year: 1951 ident: 10.1016/j.talanta.2023.125469_bib38 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss. Faraday Soc. doi: 10.1039/df9511100055 – volume: 241 start-page: 20 year: 1973 ident: 10.1016/j.talanta.2023.125469_bib39 article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions publication-title: Nat. Phys. doi: 10.1038/physci241020a0 – volume: 59 start-page: 5454 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib21 article-title: Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908154 – volume: 22 start-page: 557 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib3 article-title: Natural killer cells in antitumour adoptive cell immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00491-0 – volume: 13 start-page: 9701 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib27 article-title: O-GlcNAcylation mapping of single living cells by in situ quantitative SERS imaging publication-title: Chem. Sci. doi: 10.1039/D2SC03881A – volume: 14 start-page: 8876 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib22 article-title: Surface-enhanced Raman scattering bioimaging with an ultrahigh signal-to-background ratio under ambient light publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c01063 – volume: 39 start-page: 5811 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib9 article-title: Targeting telomerase for cancer therapy publication-title: Oncogene doi: 10.1038/s41388-020-01405-w – volume: 40 start-page: 199 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib12 article-title: Telomerase-based therapies in haematological malignancies publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.3687 – volume: 118 start-page: 4946 year: 2018 ident: 10.1016/j.talanta.2023.125469_bib25 article-title: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00668 – volume: 10 start-page: 1699 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib33 article-title: A bimodal fluorescence Raman probe for cellular imaging publication-title: Cells doi: 10.3390/cells10071699 – volume: 12 start-page: 45332 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib20 article-title: Large scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13691 – volume: 21 start-page: 386 year: 2021 ident: 10.1016/j.talanta.2023.125469_bib2 article-title: Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment publication-title: Cancer Cell Int. doi: 10.1186/s12935-021-02085-6 – volume: 5 start-page: 3194 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib28 article-title: Live cell surface enhanced Raman spectroscopy imaging of intracellular pH: from two dimensions to three dimensions publication-title: ACS Sens. doi: 10.1021/acssensors.0c01487 – volume: 205 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib17 article-title: Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114059 – volume: 59 start-page: 4231 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib19 article-title: SERS activity of semiconductors: crystalline and amorphous nanomaterials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913375 – volume: 79 start-page: 4627 year: 2019 ident: 10.1016/j.talanta.2023.125469_bib15 article-title: Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-3594 – volume: 12 start-page: 53624 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib16 article-title: Carbon nanocage/Fe3O4/DNA-based magnetically targeted intracellular imaging of telomerase via catalyzed hairpin assembly and photodynamic-photothermal combination therapy of tumor cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13925 – volume: 12 start-page: 275 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib6 article-title: A comprehensive analysis of recent deep and federated-learning-based methodologies for brain tumor diagnosis publication-title: J. Personalized Med. doi: 10.3390/jpm12020275 – volume: 79 start-page: 4215 year: 2007 ident: 10.1016/j.talanta.2023.125469_bib40 article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra publication-title: Anal. Chem. doi: 10.1021/ac0702084 – volume: 8 start-page: 5625 year: 2018 ident: 10.1016/j.talanta.2023.125469_bib8 article-title: Cascaded electrochemiluminescence signal amplifier for the detection of telomerase activity from tumor cells and tissues publication-title: Theranostics doi: 10.7150/thno.27680 – volume: 8 start-page: 388 year: 2023 ident: 10.1016/j.talanta.2023.125469_bib35 article-title: Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol publication-title: ACS Sens. doi: 10.1021/acssensors.2c02570 – volume: 16 start-page: 14055 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib26 article-title: Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells publication-title: ACS Nano doi: 10.1021/acsnano.2c03914 – volume: 91 start-page: 13143 year: 2019 ident: 10.1016/j.talanta.2023.125469_bib11 article-title: Monitoring telomerase activity in living cells with high sensitivity using cascade amplification reaction-based nanoprobe publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03410 – volume: 91 start-page: 6981 year: 2019 ident: 10.1016/j.talanta.2023.125469_bib10 article-title: Telomerase triggered DNA walker with a superhairpin structure for human telomerase activity sensing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01603 – volume: 91 start-page: 6600 year: 2019 ident: 10.1016/j.talanta.2023.125469_bib36 article-title: Surface-enhanced Raman scattering-fluorescence dual-mode nanosensors for quantitative detection of cytochrome c in living cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00480 – volume: 5 start-page: 1419 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib32 article-title: A fluorescence and surface-enhanced Raman spectroscopic dual-modal aptasensor for sensitive detection of cyanotoxins publication-title: ACS Sens. doi: 10.1021/acssensors.0c00307 – volume: 92 start-page: 15179 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib18 article-title: Functional self-assembled DNA nanohydrogels for specific telomerase activity imaging and telomerase-activated antitumor gene therapy publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03746 – volume: 201 year: 2022 ident: 10.1016/j.talanta.2023.125469_bib34 article-title: A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113891 – volume: 93 start-page: 10477 year: 2021 ident: 10.1016/j.talanta.2023.125469_bib4 article-title: Sputum-based tumor fluid biopsy: isolation and high-throughput single-cell analysis of exfoliated tumor cells for lung cancer diagnosis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00833 – volume: 59 start-page: 13267 year: 2020 ident: 10.1016/j.talanta.2023.125469_bib13 article-title: Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001598 – volume: 235 year: 2021 ident: 10.1016/j.talanta.2023.125469_bib31 article-title: DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs publication-title: Talanta doi: 10.1016/j.talanta.2021.122763 |
SSID | ssj0002303 |
Score | 2.4494624 |
Snippet | Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125469 |
SubjectTerms | biocompatibility biomarkers biomedical research DNA Dual-signal nano-system Fluorescence Live-cell imaging nanomaterials photobleaching prognosis rhodamines SERS telomerase Telomerase activity therapeutics |
Title | A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity |
URI | https://dx.doi.org/10.1016/j.talanta.2023.125469 https://www.ncbi.nlm.nih.gov/pubmed/38043337 https://www.proquest.com/docview/2897487333 https://www.proquest.com/docview/3040373263 |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcGgvVaEvykOu1Kt3HTtO7ONqBVpAcGiLxM2KHbtatCQIsuLGb2cmDxCH1Uock4yjkWcyD2fmG0J-JzyCo5EFS6LOWGq0Z0Z4wUJmSi4LbmKbKF5cZvOr9OxaXY_IbOiFwbLK3vZ3Nr211v2dSb-bk7vFAnt8wblCfgBBdCJE28OVpjlq-fjptcwDnvbAu4Yh9WsXz-QGQQaBf4QfEnKcIDS8Weef1sWfrR86-Uw-9QEknXY87pBRqHbJh9kwt-0LeZzSrrybNZB5_8dZnDQuV_V9C9zkA1jQP38ptmAxLN6Ad1VFVbMO0plCDEshjlwyHDpPF7ftECNaR7rAU2A85se6VdqEZY3HWQ-BYmcEDqD4Sq5Ojv_N5qwfr8C8NLph8Om5YCD-U4ULvMyCFiHPHFfeGy61SPPgouFlmcmQqQiiUz46hX9-C6O1k9_IVlVX4QehToXEOW98hOyulEUB5JmIXEQVlQh8j6TDplrfY4_jCIylHYrMbmwvC4uysJ0s9sj4ZdldB76xaYEeJGbfaJEFB7Fp6a9BwhYEhvtZVKFePVhISXNI66SU62kk2EKZQygMNN879XjhWGoEiZP5z_czt08-wlXa1b4dkK3mfhUOIRhq3FGr7Udke3p6Pr98Bmh8Cpw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9NBdhr3XPTVgVzWyZNnSMQhWpGubw9YCvQmWLA0pUrtoHfTvl7TlDDsEBXa1KUMWZfKjTH4k5HvGIzgaWbEs6oLlRntmhBcsFKbmsuIm9oHi-bJYXOY_r9TVHpmPtTCYVpls_2DTe2udrkzTak5vVyus8QXnCvEBgOhMCKzh2kd2KjUh-7OT08Vya5BBIHHvGoYD_hbyTK-RZxBeARmIhDzKkB3e7HJRuyBo74qOX5DnCUPS2TDNl2QvNK_IwXxs3faaPMzokOHNOgi-_2A7ThrXm_au527yAYzor98Uq7AY5m_As5qqadnA6kwBxlKAkmuGfefp6qbvY0TbSFd4EIwn_Zi6SruwbvFE6z5QLI7AHhRvyOXxj4v5gqUOC8xLozsGX58LBiCgqlzgdRG0CGXhuPLecKlFXgYXDa_rQoZCRdCe8tEp_PlbGa2dfEsmTduE94Q6FTLnvPERArxaVhWIFyJyEVVUIvBDko-Lan2iH8cuGGs75pld26QLi7qwgy4OydF22O3Av_HUAD1qzP6zkSz4iKeGfhs1bEFhuJ5VE9rNvYWotITITkq5W0aCOZQloGGQeTdsj-2MpUaeOFl--P_JfSUHi4vzM3t2sjz9SJ7BnXxIhftEJt3dJnwGbNS5L2nvPwJ7uQ1N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+target-triggered+fluorescence-SERS+dual-signal+nano-system+for+real-time+imaging+of+intracellular+telomerase+activity&rft.jtitle=Talanta+%28Oxford%29&rft.au=Zhao%2C+Yu-Jie&rft.au=Shen%2C+Ping-Fan&rft.au=Fu%2C+Jing-Hao&rft.au=Yang%2C+Feng-Rui&rft.date=2024-03-01&rft.issn=0039-9140&rft.volume=269&rft.spage=125469&rft_id=info:doi/10.1016%2Fj.talanta.2023.125469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_talanta_2023_125469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |