Crosstalk between Endoplasmic Reticulum Stress and Ferroptosis in Liver Diseases
The endoplasmic reticulum (ER) played an important role in the folding, assembly and post-translational modification of proteins. ER homeostasis could be disrupted by the accumulation of misfolded proteins, elevated reactive oxygen species (ROS) levels, and abnormal Ca2+ signaling, which was referre...
Saved in:
Published in | Frontiers in bioscience (Landmark. Print) Vol. 29; no. 6; p. 221 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
IMR Press
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The endoplasmic reticulum (ER) played an important role in the folding, assembly and post-translational modification of proteins. ER homeostasis could be disrupted by the accumulation of misfolded proteins, elevated reactive oxygen species (ROS) levels, and abnormal Ca2+ signaling, which was referred to ER stress (ERS). Ferroptosis was a unique programmed cell death model mediated by iron-dependent phospholipid peroxidation and multiple signaling pathways. The changes of mitochondrial structure, the damage of glutathione peroxidase 4 (GPX4) and excess accumulation of iron were the main characteristics of ferroptosis. ROS produced by ferroptosis can interfere with the activity of protein-folding enzymes, leading to the accumulation of large amounts of unfolded proteins, thus causing ERS. On the contrary, the increase of ERS level could promote ferroptosis by the accumulation of iron ion and lipid peroxide, the up-regulation of ferroptosis related genes. At present, the studies on the relationship between ferroptosis and ERS were one-sided and lack of in-depth studies on the interaction mechanism. This review aimed to explore the molecular mechanism of cross-talk between ferroptosis and ERS, and provide new strategies and targets for the treatment of liver diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2768-6701 2768-6698 2768-6698 |
DOI: | 10.31083/j.fbl2906221 |