Linear LMS Compensation for Timing Mismatch in Time-Interleaved ADCs

The time-interleaved architecture permits the implementation of high-frequency analog-to-digital converters (ADCs) by multiplexing the output of several time-shifted low-frequency ADCs. An issue in the design of a time-interleaved ADC is the compensation of timing mismatch, which is the difference b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 56; no. 11; pp. 2476 - 2486
Main Authors Marelli, D., Mahata, K., Minyue Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The time-interleaved architecture permits the implementation of high-frequency analog-to-digital converters (ADCs) by multiplexing the output of several time-shifted low-frequency ADCs. An issue in the design of a time-interleaved ADC is the compensation of timing mismatch, which is the difference between the ideal and real sampling instants. In this paper, we propose a compensation method that, as opposite to existing approaches, does not assume that the input signal is band limited but assumes instead that it has a stationary known power spectrum. The compensation is then designed in a statistically optimal sense. This largely reduces the compensation order required to achieve a given reconstruction accuracy. Also, under the band-limited assumption, the proposed method achieves perfect reconstruction if no constraints are imposed on the order of the compensation. Simulation results show that a rough estimate of the input spectrum can be used without much performance loss, showing that an accurate knowledge of the input spectrum is not necessarily required.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2009.2015730