Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter

Given α ∈[0 , 1] , let h α ( z) := z/(1 − αz) , z ∈ D := { z ∈ C : | z | <1} . An analytic standardly normalized function f in D is called close-to-convex with respect to h α if there exists δ ∈ ( − π/2 , π/2) such that Re{e i δ zf′( z) /h α ( z)} >0 , z ∈ D . For the class C ( h α ) of all cl...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of mathematics in China Vol. 11; no. 6; pp. 1471 - 1500
Main Authors CHO, Nak Eun, KOWALCZYK, Bogumi a, LECKO, Adam
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Given α ∈[0 , 1] , let h α ( z) := z/(1 − αz) , z ∈ D := { z ∈ C : | z | <1} . An analytic standardly normalized function f in D is called close-to-convex with respect to h α if there exists δ ∈ ( − π/2 , π/2) such that Re{e i δ zf′( z) /h α ( z)} >0 , z ∈ D . For the class C ( h α ) of all close-to-convex functions with respect to h α , the Fekete-Szegö problem is studied.
Bibliography:Document accepted on :2015-10-25
Fekete-Szegö problem
close-to-convex functions
close-to-convex functions with argumentδ
functions of bounded turning
Document received on :2014-11-23
close-to-convex functions with respect to a convex function
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1673-3452
1673-3576
DOI:10.1007/s11464-015-0510-y