Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate
Administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] can lower the serum concentration of 25-hydroxyvitamin (25-OH-D). To determine if 1,25(OH)2D3 lowers serum 25-OH-D by increasing clearance or reducing production, we directly measured the metabolic clearance rate (MCR) of 25-OH-D in rats chron...
Saved in:
Published in | The Journal of clinical investigation Vol. 78; no. 3; pp. 622 - 628 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ann Arbor, MI
American Society for Clinical Investigation
01.09.1986
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] can lower the serum concentration of 25-hydroxyvitamin (25-OH-D). To determine if 1,25(OH)2D3 lowers serum 25-OH-D by increasing clearance or reducing production, we directly measured the metabolic clearance rate (MCR) of 25-OH-D in rats chronically infused with 1,25(OH)2D3. Chronic 1,25(OH)2D3 administration (0 to 75 pmol/d) reduced, in a time- and dose-dependent fashion, the serum concentrations of 25-OH-D3 and 24,25(OH)2D3 from 18 +/- 2 to 9 +/- 1 ng/ml and from 4.8 +/- 0.7 to 1.3 +/- 0.3 ng/ml, respectively, and increased sevenfold the in vitro conversion of 25-OH-D to 24,25(OH)2D3 by kidney homogenates. The reduction in serum 25-OH-D3 was completely accounted for by an increase in MCR. No change in production occurred. The influence of 1,25(OH)2D3 on serum 25-OH-D3 and 24,25(OH)2D3 was shown not to be dependent on induction of hypercalcemia. These data suggest that chronic 1,25(OH)2D3 administration lowers serum 25-OH-D by increasing the metabolic clearance of 25-OH-D3 and not by decreasing its production. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9738 1558-8238 |
DOI: | 10.1172/JCI112619 |