Study of the catalyst deactivation in an industrial gasoil HDS reactor using a mini-scale laboratory reactor
The activity of a hydrodesulphurization catalyst loaded in an industrial hydrotreater is studied at start up and end of run. Catalyst initial and final activity was determined by performing HDS experiments at industrial conditions in a laboratory mini-scale hydrotreater. The results show that the de...
Saved in:
Published in | Fuel (Guildford) Vol. 87; no. 12; pp. 2444 - 2449 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The activity of a hydrodesulphurization catalyst loaded in an industrial hydrotreater is studied at start up and end of run. Catalyst initial and final activity was determined by performing HDS experiments at industrial conditions in a laboratory mini-scale hydrotreater. The results show that the deactivation of the catalyst samples collected from three different places of the industrial reactor do not vary significantly, the maximum difference among the catalyst samples, being less than ±4%. The experimentally determined deactivation level of the catalyst samples is compared with the deactivation estimated for the same industrial reactor and the same load using a hybrid neural network model trained with operational data of the industrial and the results are in close agreement. Catalyst deactivation appears to be faster for hydrogen consumption reactions than for hydrodesulphurization reactions indicating a decreasing hydrogen consumption trend with time in operation for specific sulphur content in the product. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2008.03.007 |