A New Contaminant Superhighway? A Review of Sources, Measurement Techniques and Fate of Atmospheric Microplastics

Microplastic pollution is a significant and growing environmental issue. Recent studies have evaluated the atmosphere as an important pathway of microplastic contamination. Airborne microplastics can be transported long distances and accumulate in various terrestrial and aquatic environmental matric...

Full description

Saved in:
Bibliographic Details
Published inWater, air, and soil pollution Vol. 231; no. 2
Main Authors Mbachu, Oluchi, Jenkins, Graham, Pratt, Chris, Kaparaju, Prasad
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microplastic pollution is a significant and growing environmental issue. Recent studies have evaluated the atmosphere as an important pathway of microplastic contamination. Airborne microplastics can be transported long distances and accumulate in various terrestrial and aquatic environmental matrices, where they represent a threat to the biosphere. This review systematically summarizes the existing knowledge on airborne microplastics, including the different sampling and analytical techniques, occurrence and sources. We investigate the different sample collection techniques from street dust to indoor and outdoor air and examined sample preparation, pre-treatment and characterization techniques. We further explored the key factors with respect to their occurrence in the environment such as concentration levels, polymer composition, size distribution, shape and colour characteristics. The sources of airborne microplastics were also summarized. The results show that microplastics are ubiquitous in all atmospheric compartments including street dust and indoor and outdoor air at various concentrations, which is influenced by the community’s lifestyle choices, anthropogenic activities and meteorological conditions. Various forms of microplastics including spherules, film, fragments, fibres and granules were identified with fibrous microplastics being the most dominant. Additionally, microplastics of 20 different polymers and varying colour characteristic have been reported in studies focusing on airborne microplastic contamination. The size distribution of microplastics varied among the studied air compartments; however, they were mostly distributed towards the smaller size ranges, less than 1 mm. Our review highlights a need to consider atmospheric pathways in addition to soil and water migration dispersion processes for any holistic assessments of microplastic threats to the biosphere. Moreover, standardization of airborne microplastic sampling methods is needed to optimize the effectiveness of future work in this area. Graphical Abstract Microplastics in atmospheric environments
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-020-4459-4