From micro- to nanosized particles: Selected characterization methods and measurable parameters
Airborne micro- and nanoparticles-aerosols - play an important role in many natural phenomena and in a variety of industrial processes, as well as the public health issue. They may be of natural or anthropogenic origin; their presence in an environment might be intentional or due to undesirable rele...
Saved in:
Published in | Particuology Vol. 9; no. 3; pp. 193 - 203 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2011
Faculty of Physics, Aerosol Physics and Environmental Physics Division, University of Vienna, Austria |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Airborne micro- and nanoparticles-aerosols - play an important role in many natural phenomena and in a variety of industrial processes, as well as the public health issue. They may be of natural or anthropogenic origin; their presence in an environment might be intentional or due to undesirable release. In any case, merely the particle detection and characterization, ideally in real-time, provide an insight into the potential burden allowing also controlling and abatement measures. Due to the broad size range it is not possible to characterize the entire particle spectrum with only one method. This contribution discusses selected optical techniques based on elastic light scattering, which are suitable for characterization of micrometer sized particles and particular electrical techniques allowing measurement of nanoparticles. It is shown that combination of instruments measuring different properties of the same nanoparticles offers derivative parameters contributing to more complete characterization of aerosols |
---|---|
Bibliography: | 11-5671/O3 Aerosol Nanoparticles Light scattering Electrical mobility Particle sizing PM-fractions Airborne micro- and nanoparticles-aerosols - play an important role in many natural phenomena and in a variety of industrial processes, as well as the public health issue. They may be of natural or anthropogenic origin; their presence in an environment might be intentional or due to undesirable release. In any case, merely the particle detection and characterization, ideally in real-time, provide an insight into the potential burden allowing also controlling and abatement measures. Due to the broad size range it is not possible to characterize the entire particle spectrum with only one method. This contribution discusses selected optical techniques based on elastic light scattering, which are suitable for characterization of micrometer sized particles and particular electrical techniques allowing measurement of nanoparticles. It is shown that combination of instruments measuring different properties of the same nanoparticles offers derivative parameters contributing to more complete characterization of aerosols ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-2001 2210-4291 |
DOI: | 10.1016/j.partic.2011.01.001 |