Mature Human Thymocytes Migrate on Laminin-5 with Activation of Metalloproteinase-14 and Cleavage of CD44

We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 172; no. 3; pp. 1397 - 1406
Main Authors Vivinus-Nebot, Mylene, Rousselle, Patricia, Breittmayer, Jean-Philippe, Cenciarini, Claire, Berrih-Aknin, Sonia, Spong, Suzanne, Nokelainen, Pasi, Cottrez, Francoise, Marinkovich, M. Peter, Bernard, Alain
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.02.2004
Publisher : Baltimore : Williams & Wilkins, c1950-. Latest Publisher : Bethesda, MD : American Association of Immunologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases. Interactions of thymocytes with laminin-5 induced a strong up-regulation of active metalloproteinase-14. However, we found that thymocytes did not cleave the laminin-5 gamma(2) chain, suggesting that they do not use the same pathway as epithelial cells to migrate on laminin-5. Interactions of thymocytes with laminin-5 also induced the release of a soluble fragment of CD44 cell surface molecule. Moreover, CD44-rich supernatants induced thymocyte migration in contrast with supernatants depleted in CD44 by immunoadsorption. CD44 cleavage was recently reported to be due to metalloproteinase-14 activation and led to increased migration in cancer cells. Thus, in this study, we show that laminin-5 promotes human mature thymocyte migration in vitro via a multimolecular mechanism involving laminin-5 integrin receptors, metalloproteinase-14 and CD44. These data suggest that, in vivo, laminin-5 may function in the migration of mature thymocytes within the medulla and be part of the thymic emigration process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.172.3.1397