A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation

We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe sp...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 72; no. 8; pp. 1722 - 1805
Main Authors Bilman, Deniz, Miller, Peter D.
Format Journal Article
LanguageEnglish
Published New York John Wiley and Sons, Limited 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc.
AbstractList We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc.
Author Miller, Peter D.
Bilman, Deniz
Author_xml – sequence: 1
  givenname: Deniz
  surname: Bilman
  fullname: Bilman, Deniz
  email: bilman@umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Peter D.
  surname: Miller
  fullname: Miller, Peter D.
  email: millerpd@umich.edu
  organization: University of Michigan
BookMark eNp1kM1OAjEQxxuDiYAefIMmnjwsdNr9PBICSkLUKHrdlG4rS6CFtqvhxXwBX8zycTJ6mcnM_P4zk38HtbTREqFrID0ghPbFhvco5FCcoTaQIosIA9pCbUKARCyNyQXqOLcMJcQ5a6O3AX4288Z5PNEf0jqJXwT3Xtpav-OZ5dopY9c4BOwXEo-NaNx-9GD0qtaS28Av7PdXFZrS4tG24b42-hKdK75y8uqUu-h1PJoN76Pp491kOJhGghV5ERU8ETJOgYlKFUxlIs14quYAZB4zXnFCIUkkiFSSOKMyzypFGU2EgCIXwBXropvj3o0120Y6Xy5NY3U4WVIa0wzSNM4C1T9SwhrnrFSlqP3hT295vSqBlHvzymBeeTAvKG5_KTa2XnO7-5M9bf-sV3L3P1gOnwZHxQ-pYoEs
CitedBy_id crossref_primary_10_1016_j_jde_2022_07_024
crossref_primary_10_1515_anona_2024_0054
crossref_primary_10_1007_s44198_023_00120_w
crossref_primary_10_1088_1572_9494_ac75b3
crossref_primary_10_1111_sapm_12523
crossref_primary_10_1016_j_physleta_2022_128359
crossref_primary_10_1088_1751_8121_acbb45
crossref_primary_10_1016_j_padiff_2022_100342
crossref_primary_10_1111_sapm_12763
crossref_primary_10_1098_rspa_2022_0144
crossref_primary_10_1002_mma_10157
crossref_primary_10_1016_j_cnsns_2021_105896
crossref_primary_10_3390_axioms14020094
crossref_primary_10_1016_j_physleta_2019_125906
crossref_primary_10_1007_s11587_023_00798_6
crossref_primary_10_1002_mma_8498
crossref_primary_10_1016_j_physd_2021_133060
crossref_primary_10_1103_PhysRevE_101_052207
crossref_primary_10_3389_fphy_2021_599146
crossref_primary_10_1016_j_physd_2024_134434
crossref_primary_10_1134_S004057792404007X
crossref_primary_10_1016_j_jde_2024_09_038
crossref_primary_10_1016_j_physd_2023_133981
crossref_primary_10_1016_j_physd_2020_132378
crossref_primary_10_1016_j_physd_2020_132811
crossref_primary_10_1002_mma_8094
crossref_primary_10_2140_apde_2020_13_1539
crossref_primary_10_1016_j_chaos_2024_115185
crossref_primary_10_1007_s00332_021_09720_6
crossref_primary_10_1016_j_aml_2020_106441
crossref_primary_10_1063_1_5058722
crossref_primary_10_1112_plms_12619
crossref_primary_10_1088_1361_6544_abd7c6
crossref_primary_10_1007_s11071_020_05521_w
crossref_primary_10_1515_zna_2020_0327
crossref_primary_10_1140_epjp_s13360_022_03238_w
crossref_primary_10_1007_s00220_021_03946_x
crossref_primary_10_1007_s00023_021_01143_z
crossref_primary_10_1111_sapm_12547
crossref_primary_10_1007_s10240_024_00148_8
crossref_primary_10_46298_ocnmp_10036
crossref_primary_10_1007_s11071_025_11044_z
crossref_primary_10_1090_memo_1505
crossref_primary_10_1088_1572_9494_aba241
crossref_primary_10_1016_j_physd_2022_133162
crossref_primary_10_1007_s11071_024_10378_4
crossref_primary_10_1007_s00332_021_09735_z
crossref_primary_10_1016_j_physd_2022_133289
crossref_primary_10_1088_1572_9494_ac679b
crossref_primary_10_1007_s11071_024_10850_1
crossref_primary_10_1016_j_nonrwa_2022_103667
crossref_primary_10_3389_fphy_2021_599767
crossref_primary_10_1209_0295_5075_132_64001
crossref_primary_10_1088_1572_9494_ac08fb
crossref_primary_10_1016_j_matcom_2025_01_008
crossref_primary_10_1016_j_cnsns_2021_105943
crossref_primary_10_1063_5_0226548
crossref_primary_10_1111_sapm_12436
crossref_primary_10_1007_s00220_024_05054_y
crossref_primary_10_1007_s00220_023_04691_z
crossref_primary_10_1088_1361_6420_ab6d59
crossref_primary_10_1098_rspa_2020_0853
crossref_primary_10_1063_1_5084720
crossref_primary_10_1016_j_aim_2022_108639
crossref_primary_10_1007_s11040_021_09388_0
crossref_primary_10_7566_JPSJ_93_024006
crossref_primary_10_1007_s00332_023_09971_5
crossref_primary_10_1016_j_physd_2022_133332
crossref_primary_10_1016_j_physleta_2021_127472
crossref_primary_10_1515_zna_2023_0295
crossref_primary_10_1016_j_physd_2021_133152
crossref_primary_10_1016_j_aim_2023_109356
crossref_primary_10_1007_s00332_022_09819_4
crossref_primary_10_1016_j_jde_2023_08_028
crossref_primary_10_1063_5_0134535
crossref_primary_10_1111_sapm_12287
crossref_primary_10_1016_j_jde_2021_06_016
crossref_primary_10_1007_s11071_024_10659_y
crossref_primary_10_1215_00127094_2019_0066
crossref_primary_10_7498_aps_72_20222298
crossref_primary_10_1016_j_cnsns_2022_106382
crossref_primary_10_7566_JPSJ_89_014001
crossref_primary_10_1016_j_physd_2021_132954
crossref_primary_10_3367_UFNe_2021_08_039038
crossref_primary_10_3390_e24111653
crossref_primary_10_1016_j_physd_2023_133922
crossref_primary_10_4213_tmf10615
crossref_primary_10_1111_sapm_12573
crossref_primary_10_1007_s00205_020_01535_1
crossref_primary_10_1007_s11071_021_06425_z
crossref_primary_10_1111_sapm_12450
crossref_primary_10_1088_1402_4896_ad9870
crossref_primary_10_1002_mma_10628
crossref_primary_10_1088_1361_6544_ad76f5
crossref_primary_10_1016_j_physd_2022_133274
crossref_primary_10_1111_sapm_12619
crossref_primary_10_1007_s00332_019_09559_y
crossref_primary_10_1111_sapm_12347
crossref_primary_10_1016_j_rinp_2022_106013
crossref_primary_10_1007_s00332_022_09816_7
crossref_primary_10_1103_PhysRevE_100_052219
crossref_primary_10_1007_s00605_022_01786_y
crossref_primary_10_1007_s42967_024_00418_6
crossref_primary_10_1016_j_aml_2019_06_014
crossref_primary_10_1016_j_aml_2023_108871
crossref_primary_10_1016_j_rinp_2024_107945
crossref_primary_10_1016_j_physd_2022_133400
crossref_primary_10_1007_s00332_019_09542_7
crossref_primary_10_1098_rspa_2024_0764
crossref_primary_10_1088_1572_9494_acd99a
crossref_primary_10_1111_sapm_70027
crossref_primary_10_1007_s11005_023_01643_5
crossref_primary_10_3934_mbe_2023532
crossref_primary_10_1007_s00220_021_03942_1
crossref_primary_10_1016_j_physd_2024_134389
crossref_primary_10_1016_j_aml_2022_108562
crossref_primary_10_1016_j_chaos_2024_115008
crossref_primary_10_1007_s11005_022_01571_w
crossref_primary_10_1016_j_chaos_2024_115407
crossref_primary_10_1016_j_jde_2022_05_003
crossref_primary_10_1007_s11071_022_07496_2
Cites_doi 10.1063/1.4773096
10.1007/BF01075696
10.1038/ncomms13136
10.1111/j.1467-9590.2012.00572.x
10.1002/cpa.21701
10.1103/PhysRevE.87.052914
10.1140/epjst/e2010-01252-9
10.1007/978-3-662-00922-2
10.1016/0022-247X(76)90201-8
10.1088/1751-8113/43/12/122002
10.1002/sapm197960143
10.1137/1.9780898717068
10.1038/nphys1740
10.1103/PhysRevLett.119.033901
10.1007/978-3-540-69969-9
10.1002/cpa.21445
10.1515/9783110470574
10.1103/PhysRevLett.114.143903
10.1103/PhysRevLett.112.124101
10.1002/cpa.3160370105
10.1103/PhysRevE.57.3510
10.1103/PhysRevLett.106.204502
10.1364/OL.36.000112
10.1016/j.physleta.2017.03.023
10.1103/PhysRevE.85.026607
10.1002/sapm1974534249
10.2307/2946540
10.1017/jfm.2016.13
10.1103/PhysRevE.80.026601
10.1007/978-3-540-88419-4_5
10.1098/rspa.1997.0077
10.1002/cpa.3160420702
10.1002/cpa.3160440502
10.1063/1.4868483
10.1002/cpa.20162
10.1137/0520065
10.1088/1742-6596/482/1/012016
10.1017/S0334270000003891
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21819
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1805
ExternalDocumentID 10_1002_cpa_21819
CPA21819
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c3989-9a5ce4613cdf93f7c67a6fb110b43ada02155e1c6e0472e87df2325cc198c1af3
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:04:57 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 02:50:30 EDT 2025
Wed Jan 22 16:40:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3989-9a5ce4613cdf93f7c67a6fb110b43ada02155e1c6e0472e87df2325cc198c1af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://deepblue.lib.umich.edu/bitstream/2027.42/149759/1/cpa21819.pdf
PQID 2242716647
PQPubID 48818
PageCount 3
ParticipantIDs proquest_journals_2242716647
crossref_citationtrail_10_1002_cpa_21819
crossref_primary_10_1002_cpa_21819
wiley_primary_10_1002_cpa_21819_CPA21819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2019
Publisher John Wiley and Sons, Limited
Publisher_xml – name: John Wiley and Sons, Limited
References 2017; 119
1989; 42
1989; 20
1974; 53
2013; 66
2009; 80
2013; 87
1997; 453
2009
2008
2010; 185
1977; 22
2011; 36
1991
1974; 8
2014; 112
1955
1976; 54
2010; 43
2016; 7
2017; 70
2011; 106
1984; 37
2013; 54
1991; 44
2015; 114
1986; 69
1987
2018
2017
2017; 381
2007; 60
2016
2013; 131
2014; 482
1993; 137
1979; 60
2014; 55
2016; 790
2010; 6
1983; 25
2012; 85
1998; 57
Coddington E. A. (e_1_2_1_13_1) 1955
Kuznetsov E. A. (e_1_2_1_31_1) 1977; 22
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
Akhmediev N. N. (e_1_2_1_4_1) 1986; 69
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 112
  start-page: 5
  issue: 12
  year: 2014
  article-title: Time‐reversal generation of rogue waves
  publication-title: Phys. Rev. Lett.
– year: 2009
– volume: 790
  start-page: 368
  year: 2016
  end-page: 388
  article-title: Reduced order prediction of rare events in unidirectional nonlinear water waves
  publication-title: J. Fluid Mech.
– volume: 453
  start-page: 1411
  issue: 1962
  year: 1997
  end-page: 1443
  article-title: A unified transform method for solving linear and certain nonlinear PDEs
  publication-title: Proc. Roy. Soc. London Ser. A
– volume: 87
  start-page: 052914
  issue: 5
  year: 2013
  article-title: Generating mechanism for higher‐order rogue waves
  publication-title: Phys. Rev. E
– volume: 85
  start-page: 9
  issue: 2
  year: 2012
  article-title: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions
  publication-title: Phys. Rev. E
– volume: 43
  start-page: 9
  issue: 12
  year: 2010
  article-title: Rogue waves, rational solutions, the patterns of their zeros and integral relations
  publication-title: J. Phys. A
– volume: 6
  start-page: 790
  issue: 10
  year: 2010
  end-page: 795
  article-title: The Peregrine soliton in nonlinear fibre optics
  publication-title: Nat. Phys.
– volume: 42
  start-page: 895
  issue: 7
  year: 1989
  end-page: 938
  article-title: Direct and inverse scattering transforms with arbitrary spectral singularities
  publication-title: Comm. Pure Appl. Math.
– year: 1987
– volume: 20
  start-page: 966
  issue: 4
  year: 1989
  end-page: 986
  article-title: The Riemann‐Hilbert problem and inverse scattering
  publication-title: SIAM J. Math. Anal.
– volume: 381
  start-page: 1714
  issue: 20
  year: 2017
  end-page: 1718
  article-title: The height of an th‐order fundamental rogue wave for the nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
– volume: 137
  start-page: 295
  issue: 2
  year: 1993
  end-page: 368
  article-title: A steepest descent method for oscillatory Riemann‐Hilbert problems. Asymptotics for the mKdV equation
  publication-title: Ann. of Math. (2)
– volume: 185
  start-page: 247
  issue: 1
  year: 2010
  end-page: 258
  article-title: On multi‐rogue wave solutions of the NLS equation and positon solutions of the KdV equation
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 54
  start-page: 32
  issue: 1
  year: 2013
  article-title: Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi‐rogue waves
  publication-title: J. Math. Phys.
– volume: 69
  start-page: 189
  issue: 2
  year: 1986
  end-page: 194
  article-title: Modulation instability and periodic solutions of the nonlinear Schrödinger equation
  publication-title: Teoret. Mat. Fiz.
– volume: 131
  start-page: 1
  issue: 1
  year: 2013
  end-page: 40
  article-title: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions
  publication-title: Stud. Appl. Math.
– year: 2016
– year: 2018
– volume: 106
  start-page: 4
  issue: 20
  year: 2011
  article-title: Rogue wave observation in a water wave tank
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 39
  issue: 1
  year: 1984
  end-page: 90
  article-title: Scattering and inverse scattering for first order systems
  publication-title: Comm. Pure Appl. Math.
– volume: 8
  start-page: 226
  issue: 3
  year: 1974
  end-page: 235
  article-title: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I
  publication-title: Funct. Anal. Appl.
– volume: 54
  start-page: 849
  issue: 3
  year: 1976
  end-page: 864
  article-title: Closure of the squared Zakharov‐Shabat eigenstates
  publication-title: J. Math. Anal. Appl.
– volume: 57
  start-page: 3510
  issue: 3
  year: 1998
  end-page: 3519
  article-title: Breather solutions to the focusing nonlinear Schrödinger equation
  publication-title: Phys. Rev. E (3)
– volume: 22
  start-page: 507
  issue: 9
  year: 1977
  end-page: 508
  article-title: Solitons in parametrically unstable plasma
  publication-title: Dokl. Akad. Nauk SSR.
– volume: 25
  start-page: 16
  issue: 1
  year: 1983
  end-page: 43
  article-title: Water waves, nonlinear Schrödinger equations and their solutions
  publication-title: J. Austral. Math. Soc. Ser. B
– volume: 53
  start-page: 249
  issue: 4
  year: 1974
  end-page: 315
  article-title: The inverse scattering transform‐Fourier analysis for nonlinear problems
  publication-title: Studies in Appl. Math.
– volume: 55
  start-page: 22
  issue: 3
  year: 2014
  article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions
  publication-title: J. Math. Phys.
– volume: 44
  start-page: 485
  issue: 5
  year: 1991
  end-page: 533
  article-title: Direct and inverse scattering on the line with arbitrary singularities
  publication-title: Comm. Pure Appl. Math.
– volume: 36
  start-page: 112
  issue: 2
  year: 2011
  end-page: 114
  article-title: Peregrine soliton generation and breakup in standard telecommunications fiber
  publication-title: Opt. Lett.
– volume: 60
  start-page: 951
  issue: 7
  year: 2007
  end-page: 1026
  article-title: The ‐soliton of the focusing nonlinear Schrödinger equation for large
  publication-title: Comm. Pure Appl. Math.
– volume: 70
  start-page: 2300
  issue: 12
  year: 2017
  end-page: 2365
  article-title: Long‐time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability
  publication-title: Comm. Pure Appl. Math.
– year: 2008
– volume: 80
  start-page: 026601
  issue: 2
  year: 2009
  article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation
  publication-title: Phys. Rev. E.
– volume: 66
  start-page: 678
  issue: 5
  year: 2013
  end-page: 752
  article-title: Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I
  publication-title: Comm. Pure Appl. Math.
– volume: 119
  start-page: 6
  issue: 3
  year: 2017
  article-title: Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 13136
  year: 2016
  article-title: Single‐shot observation of optical rogue waves in integrable turbulence using time microscopy
  publication-title: Nat. Commun.
– volume: 60
  start-page: 43
  issue: 1
  year: 1979
  end-page: 58
  article-title: The perturbed plane‐wave solutions of the cubic Schrödinger equation
  publication-title: Stud. Appl. Math.
– year: 2017
– year: 1991
– year: 1955
– volume: 482
  start-page: 012016
  issue: 1
  year: 2014
  article-title: Higher order Peregrine breathers, their deformations and multi‐rogue waves
  publication-title: J. Phys. Conf. Ser.
– volume: 114
  start-page: 5
  issue: 14
  year: 2015
  article-title: Optical rogue waves in integrable turbulence
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_1_22_1
  doi: 10.1063/1.4773096
– ident: e_1_2_1_35_1
– ident: e_1_2_1_42_1
  doi: 10.1007/BF01075696
– ident: e_1_2_1_37_1
  doi: 10.1038/ncomms13136
– ident: e_1_2_1_17_1
  doi: 10.1111/j.1467-9590.2012.00572.x
– ident: e_1_2_1_10_1
  doi: 10.1002/cpa.21701
– ident: e_1_2_1_27_1
  doi: 10.1103/PhysRevE.87.052914
– ident: e_1_2_1_18_1
  doi: 10.1140/epjst/e2010-01252-9
– ident: e_1_2_1_34_1
  doi: 10.1007/978-3-662-00922-2
– ident: e_1_2_1_28_1
  doi: 10.1016/0022-247X(76)90201-8
– ident: e_1_2_1_5_1
  doi: 10.1088/1751-8113/43/12/122002
– ident: e_1_2_1_33_1
  doi: 10.1002/sapm197960143
– ident: e_1_2_1_21_1
  doi: 10.1137/1.9780898717068
– ident: e_1_2_1_30_1
  doi: 10.1038/nphys1740
– ident: e_1_2_1_39_1
  doi: 10.1103/PhysRevLett.119.033901
– ident: e_1_2_1_19_1
  doi: 10.1007/978-3-540-69969-9
– ident: e_1_2_1_7_1
  doi: 10.1002/cpa.21445
– volume-title: Theory of ordinary differential equations
  year: 1955
  ident: e_1_2_1_13_1
– ident: e_1_2_1_25_1
  doi: 10.1515/9783110470574
– ident: e_1_2_1_40_1
  doi: 10.1103/PhysRevLett.114.143903
– volume: 69
  start-page: 189
  issue: 2
  year: 1986
  ident: e_1_2_1_4_1
  article-title: Modulation instability and periodic solutions of the nonlinear Schrödinger equation
  publication-title: Teoret. Mat. Fiz.
– ident: e_1_2_1_11_1
  doi: 10.1103/PhysRevLett.112.124101
– ident: e_1_2_1_6_1
  doi: 10.1002/cpa.3160370105
– ident: e_1_2_1_38_1
  doi: 10.1103/PhysRevE.57.3510
– ident: e_1_2_1_12_1
  doi: 10.1103/PhysRevLett.106.204502
– ident: e_1_2_1_26_1
  doi: 10.1364/OL.36.000112
– ident: e_1_2_1_41_1
  doi: 10.1016/j.physleta.2017.03.023
– ident: e_1_2_1_24_1
  doi: 10.1103/PhysRevE.85.026607
– ident: e_1_2_1_2_1
  doi: 10.1002/sapm1974534249
– ident: e_1_2_1_8_1
– ident: e_1_2_1_16_1
  doi: 10.2307/2946540
– ident: e_1_2_1_14_1
  doi: 10.1017/jfm.2016.13
– volume: 22
  start-page: 507
  issue: 9
  year: 1977
  ident: e_1_2_1_31_1
  article-title: Solitons in parametrically unstable plasma
  publication-title: Dokl. Akad. Nauk SSR.
– ident: e_1_2_1_3_1
  doi: 10.1103/PhysRevE.80.026601
– ident: e_1_2_1_29_1
  doi: 10.1007/978-3-540-88419-4_5
– ident: e_1_2_1_20_1
  doi: 10.1098/rspa.1997.0077
– ident: e_1_2_1_43_1
  doi: 10.1002/cpa.3160420702
– ident: e_1_2_1_15_1
  doi: 10.1002/cpa.3160440502
– ident: e_1_2_1_9_1
  doi: 10.1063/1.4868483
– ident: e_1_2_1_32_1
  doi: 10.1002/cpa.20162
– ident: e_1_2_1_44_1
  doi: 10.1137/0520065
– ident: e_1_2_1_23_1
  doi: 10.1088/1742-6596/482/1/012016
– ident: e_1_2_1_36_1
  doi: 10.1017/S0334270000003891
SSID ssj0011483
Score 2.6043696
Snippet We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1722
SubjectTerms Asymptotic methods
Asymptotic properties
Boundary conditions
Dynamic stability
Inverse scattering
Schrodinger equation
Singularity (mathematics)
Structural stability
Transformations (mathematics)
Title A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21819
https://www.proquest.com/docview/2242716647
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz34LU6nBPHgpVs_0i88jbExhA2Zm-wglCRNFJRttt3FP8x_wH_MvKbtVBTES-jhpU3z8vJ-fX35PYQulMtmjiVjw-bSN4jtMyMQvgNxKyqJbTKHQWhgOPIGU3I9c2c1dFWehdH8EFXADSwj36_BwClL22vSUL6kLfBPcHgPcrUAEI0r6iiA-frvMuwzHjFLViHTblc9v_qiNcD8DFNzP9PfRvflCHV6yVNrlbEWf_1G3vjPV9hBWwX-xB29YHZRTcz30OawIm9N99FdB48XbJVmGEg4klTgW56zcCovhycl0MWqwaoX7i84JM8_4JEeEk2U_GPy_hbnEUPce9Fs4gdo2u9NugOjKL9gcAcSqULqckGUu-exDB3pc8-nnmQKLzDi0JgCWnCFxT0BjJMi8GOp4JnLuRUG3KLSOUT1-WIujhAWgWMKErgxDSwiCaXcchlUKhOcqdZsoMtSEREvuMmhRMZzpFmV7UhNVZRPVQOdV6JLTcjxk1Cz1GZU2GQaKbBiq69Dj_jqcblafr9B1L3p5BfHfxc9QRsKTYU6O7CJ6lmyEqcKsWTsLF-aH8mj59I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcoC2teBaraiUuWfJwHnvgsAJWS2FXFV0qbsF27CKBdmGzK9T-Js78Ac78J2biJFDUSr1w6MXKwXESj8ffzGT8DcAnhGwZeCZzfGVih_uxdBIdBxS3Eob7rgwkhQa6vahzxL8ch8dTcF2dhbH8EHXAjTSj2K9JwSkgvfnAGqouRIMAqlmmVO7rn1fosOVbezso3c--397tb3ecsqaAowLKDmqKUGmOGKYy0wxMrKJYREYiCEoeiEwQBIbaU5EmGkWdxJlBmyNUCp1z5QkT4LgvYIYqiBNT_85hTVZFjoX9n007W8TdisfI9TfrV_0d_R5M2seGcYFs7Xm4q-bEJrScNSZj2VC_ntBF_i-T9hrmShObtaxOvIEpPXgLs92anzZfgO8tdjiUk3zMiGdklGv2TRVEowjkrF_Z8gwbhnex9lDR-YAfrGfnQIyw_-no9iYrgqJs99ISpr-Do2f5sPcwPRgO9CIwnQSu5kmYicTjhguhvFBSMTatJLbuEmxUkk9VSb9OVUDOU0sc7acomrQQzRJ8rLteWM6RP3VarZZPWm47eYr2mI8OcMRjfFyxDv4-QLr9tVVcLP9713V42el3D9KDvd7-CrxC47FpkyFXYXo8mug1NNDG8kOhFwxOnntN3QPhJkY4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRA9lPKoSrsUC4HEJbt5OK8Dh9UuK54rxEvcgu3YRaLa3W52VbV_iTt_gCs_inGchIJA4sKBi5WD4yQej7-ZyfgbgDWEbO45KrVcoUKLuiG3Ihl6Om7FFHVt7nEdGjjoBtundPfcP5-A6_IsjOGHqAJuWjPy_Vor-CBVjQfSUDFgdY1PcZFRuSf__kF_LdvcaaNw1123s3XS2raKkgKW8HRyUMx8ISlCmEhV7KlQBCELFEcM5NRjKdMI6EtHBFKzKMooTBWaHL4Q6JsLhykPx52EDzSwY10non1UcVVpv8L8ztYbW0DtksbIdhvVqz4GvweL9n-7OAe2zizclVNi8lmu6uMRr4t_T9gi38mcfYZPhYFNmkYj5mBC9ubh40HFTpstwFmTHPX5OBsRzTIyzCQ5FjnNKMI4OSkteYINwbtIpy_06YCfpGumgA2x_-Xw9ibNQ6Jk67ehS1-E0zf5sC8w1ev35FcgMvJsSSM_ZZFDFWVMOD7Xpdik4NjaS7BRCj4RBfm6rgHyKzG00W6Cokly0SzBatV1YBhHnutUK1dPUmw6WYLWmIvub0BDfFy-DF4eIGkdNvOLb6_vugLTh-1Osr_T3fsOM2g5xiYTsgZTo-FYLqN1NuI_cq0gcPHWS-oeshZE5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Inverse+Scattering+Transform+for+the+Focusing+Nonlinear+Schr%C3%B6dinger+Equation&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Bilman%2C+Deniz&rft.au=Miller%2C+Peter+D.&rft.date=2019-08-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=72&rft.issue=8&rft.spage=1722&rft.epage=1805&rft_id=info:doi/10.1002%2Fcpa.21819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon