A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation
We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe sp...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 72; no. 8; pp. 1722 - 1805 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley and Sons, Limited
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc. |
---|---|
AbstractList | We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc. |
Author | Miller, Peter D. Bilman, Deniz |
Author_xml | – sequence: 1 givenname: Deniz surname: Bilman fullname: Bilman, Deniz email: bilman@umich.edu organization: University of Michigan – sequence: 2 givenname: Peter D. surname: Miller fullname: Miller, Peter D. email: millerpd@umich.edu organization: University of Michigan |
BookMark | eNp1kM1OAjEQxxuDiYAefIMmnjwsdNr9PBICSkLUKHrdlG4rS6CFtqvhxXwBX8zycTJ6mcnM_P4zk38HtbTREqFrID0ghPbFhvco5FCcoTaQIosIA9pCbUKARCyNyQXqOLcMJcQ5a6O3AX4288Z5PNEf0jqJXwT3Xtpav-OZ5dopY9c4BOwXEo-NaNx-9GD0qtaS28Av7PdXFZrS4tG24b42-hKdK75y8uqUu-h1PJoN76Pp491kOJhGghV5ERU8ETJOgYlKFUxlIs14quYAZB4zXnFCIUkkiFSSOKMyzypFGU2EgCIXwBXropvj3o0120Y6Xy5NY3U4WVIa0wzSNM4C1T9SwhrnrFSlqP3hT295vSqBlHvzymBeeTAvKG5_KTa2XnO7-5M9bf-sV3L3P1gOnwZHxQ-pYoEs |
CitedBy_id | crossref_primary_10_1016_j_jde_2022_07_024 crossref_primary_10_1515_anona_2024_0054 crossref_primary_10_1007_s44198_023_00120_w crossref_primary_10_1088_1572_9494_ac75b3 crossref_primary_10_1111_sapm_12523 crossref_primary_10_1016_j_physleta_2022_128359 crossref_primary_10_1088_1751_8121_acbb45 crossref_primary_10_1016_j_padiff_2022_100342 crossref_primary_10_1111_sapm_12763 crossref_primary_10_1098_rspa_2022_0144 crossref_primary_10_1002_mma_10157 crossref_primary_10_1016_j_cnsns_2021_105896 crossref_primary_10_3390_axioms14020094 crossref_primary_10_1016_j_physleta_2019_125906 crossref_primary_10_1007_s11587_023_00798_6 crossref_primary_10_1002_mma_8498 crossref_primary_10_1016_j_physd_2021_133060 crossref_primary_10_1103_PhysRevE_101_052207 crossref_primary_10_3389_fphy_2021_599146 crossref_primary_10_1016_j_physd_2024_134434 crossref_primary_10_1134_S004057792404007X crossref_primary_10_1016_j_jde_2024_09_038 crossref_primary_10_1016_j_physd_2023_133981 crossref_primary_10_1016_j_physd_2020_132378 crossref_primary_10_1016_j_physd_2020_132811 crossref_primary_10_1002_mma_8094 crossref_primary_10_2140_apde_2020_13_1539 crossref_primary_10_1016_j_chaos_2024_115185 crossref_primary_10_1007_s00332_021_09720_6 crossref_primary_10_1016_j_aml_2020_106441 crossref_primary_10_1063_1_5058722 crossref_primary_10_1112_plms_12619 crossref_primary_10_1088_1361_6544_abd7c6 crossref_primary_10_1007_s11071_020_05521_w crossref_primary_10_1515_zna_2020_0327 crossref_primary_10_1140_epjp_s13360_022_03238_w crossref_primary_10_1007_s00220_021_03946_x crossref_primary_10_1007_s00023_021_01143_z crossref_primary_10_1111_sapm_12547 crossref_primary_10_1007_s10240_024_00148_8 crossref_primary_10_46298_ocnmp_10036 crossref_primary_10_1007_s11071_025_11044_z crossref_primary_10_1090_memo_1505 crossref_primary_10_1088_1572_9494_aba241 crossref_primary_10_1016_j_physd_2022_133162 crossref_primary_10_1007_s11071_024_10378_4 crossref_primary_10_1007_s00332_021_09735_z crossref_primary_10_1016_j_physd_2022_133289 crossref_primary_10_1088_1572_9494_ac679b crossref_primary_10_1007_s11071_024_10850_1 crossref_primary_10_1016_j_nonrwa_2022_103667 crossref_primary_10_3389_fphy_2021_599767 crossref_primary_10_1209_0295_5075_132_64001 crossref_primary_10_1088_1572_9494_ac08fb crossref_primary_10_1016_j_matcom_2025_01_008 crossref_primary_10_1016_j_cnsns_2021_105943 crossref_primary_10_1063_5_0226548 crossref_primary_10_1111_sapm_12436 crossref_primary_10_1007_s00220_024_05054_y crossref_primary_10_1007_s00220_023_04691_z crossref_primary_10_1088_1361_6420_ab6d59 crossref_primary_10_1098_rspa_2020_0853 crossref_primary_10_1063_1_5084720 crossref_primary_10_1016_j_aim_2022_108639 crossref_primary_10_1007_s11040_021_09388_0 crossref_primary_10_7566_JPSJ_93_024006 crossref_primary_10_1007_s00332_023_09971_5 crossref_primary_10_1016_j_physd_2022_133332 crossref_primary_10_1016_j_physleta_2021_127472 crossref_primary_10_1515_zna_2023_0295 crossref_primary_10_1016_j_physd_2021_133152 crossref_primary_10_1016_j_aim_2023_109356 crossref_primary_10_1007_s00332_022_09819_4 crossref_primary_10_1016_j_jde_2023_08_028 crossref_primary_10_1063_5_0134535 crossref_primary_10_1111_sapm_12287 crossref_primary_10_1016_j_jde_2021_06_016 crossref_primary_10_1007_s11071_024_10659_y crossref_primary_10_1215_00127094_2019_0066 crossref_primary_10_7498_aps_72_20222298 crossref_primary_10_1016_j_cnsns_2022_106382 crossref_primary_10_7566_JPSJ_89_014001 crossref_primary_10_1016_j_physd_2021_132954 crossref_primary_10_3367_UFNe_2021_08_039038 crossref_primary_10_3390_e24111653 crossref_primary_10_1016_j_physd_2023_133922 crossref_primary_10_4213_tmf10615 crossref_primary_10_1111_sapm_12573 crossref_primary_10_1007_s00205_020_01535_1 crossref_primary_10_1007_s11071_021_06425_z crossref_primary_10_1111_sapm_12450 crossref_primary_10_1088_1402_4896_ad9870 crossref_primary_10_1002_mma_10628 crossref_primary_10_1088_1361_6544_ad76f5 crossref_primary_10_1016_j_physd_2022_133274 crossref_primary_10_1111_sapm_12619 crossref_primary_10_1007_s00332_019_09559_y crossref_primary_10_1111_sapm_12347 crossref_primary_10_1016_j_rinp_2022_106013 crossref_primary_10_1007_s00332_022_09816_7 crossref_primary_10_1103_PhysRevE_100_052219 crossref_primary_10_1007_s00605_022_01786_y crossref_primary_10_1007_s42967_024_00418_6 crossref_primary_10_1016_j_aml_2019_06_014 crossref_primary_10_1016_j_aml_2023_108871 crossref_primary_10_1016_j_rinp_2024_107945 crossref_primary_10_1016_j_physd_2022_133400 crossref_primary_10_1007_s00332_019_09542_7 crossref_primary_10_1098_rspa_2024_0764 crossref_primary_10_1088_1572_9494_acd99a crossref_primary_10_1111_sapm_70027 crossref_primary_10_1007_s11005_023_01643_5 crossref_primary_10_3934_mbe_2023532 crossref_primary_10_1007_s00220_021_03942_1 crossref_primary_10_1016_j_physd_2024_134389 crossref_primary_10_1016_j_aml_2022_108562 crossref_primary_10_1016_j_chaos_2024_115008 crossref_primary_10_1007_s11005_022_01571_w crossref_primary_10_1016_j_chaos_2024_115407 crossref_primary_10_1016_j_jde_2022_05_003 crossref_primary_10_1007_s11071_022_07496_2 |
Cites_doi | 10.1063/1.4773096 10.1007/BF01075696 10.1038/ncomms13136 10.1111/j.1467-9590.2012.00572.x 10.1002/cpa.21701 10.1103/PhysRevE.87.052914 10.1140/epjst/e2010-01252-9 10.1007/978-3-662-00922-2 10.1016/0022-247X(76)90201-8 10.1088/1751-8113/43/12/122002 10.1002/sapm197960143 10.1137/1.9780898717068 10.1038/nphys1740 10.1103/PhysRevLett.119.033901 10.1007/978-3-540-69969-9 10.1002/cpa.21445 10.1515/9783110470574 10.1103/PhysRevLett.114.143903 10.1103/PhysRevLett.112.124101 10.1002/cpa.3160370105 10.1103/PhysRevE.57.3510 10.1103/PhysRevLett.106.204502 10.1364/OL.36.000112 10.1016/j.physleta.2017.03.023 10.1103/PhysRevE.85.026607 10.1002/sapm1974534249 10.2307/2946540 10.1017/jfm.2016.13 10.1103/PhysRevE.80.026601 10.1007/978-3-540-88419-4_5 10.1098/rspa.1997.0077 10.1002/cpa.3160420702 10.1002/cpa.3160440502 10.1063/1.4868483 10.1002/cpa.20162 10.1137/0520065 10.1088/1742-6596/482/1/012016 10.1017/S0334270000003891 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21819 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1805 |
ExternalDocumentID | 10_1002_cpa_21819 CPA21819 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c3989-9a5ce4613cdf93f7c67a6fb110b43ada02155e1c6e0472e87df2325cc198c1af3 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:04:57 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Jul 01 02:50:30 EDT 2025 Wed Jan 22 16:40:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3989-9a5ce4613cdf93f7c67a6fb110b43ada02155e1c6e0472e87df2325cc198c1af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://deepblue.lib.umich.edu/bitstream/2027.42/149759/1/cpa21819.pdf |
PQID | 2242716647 |
PQPubID | 48818 |
PageCount | 3 |
ParticipantIDs | proquest_journals_2242716647 crossref_citationtrail_10_1002_cpa_21819 crossref_primary_10_1002_cpa_21819 wiley_primary_10_1002_cpa_21819_CPA21819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2019 |
Publisher | John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley and Sons, Limited |
References | 2017; 119 1989; 42 1989; 20 1974; 53 2013; 66 2009; 80 2013; 87 1997; 453 2009 2008 2010; 185 1977; 22 2011; 36 1991 1974; 8 2014; 112 1955 1976; 54 2010; 43 2016; 7 2017; 70 2011; 106 1984; 37 2013; 54 1991; 44 2015; 114 1986; 69 1987 2018 2017 2017; 381 2007; 60 2016 2013; 131 2014; 482 1993; 137 1979; 60 2014; 55 2016; 790 2010; 6 1983; 25 2012; 85 1998; 57 Coddington E. A. (e_1_2_1_13_1) 1955 Kuznetsov E. A. (e_1_2_1_31_1) 1977; 22 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 Akhmediev N. N. (e_1_2_1_4_1) 1986; 69 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – volume: 112 start-page: 5 issue: 12 year: 2014 article-title: Time‐reversal generation of rogue waves publication-title: Phys. Rev. Lett. – year: 2009 – volume: 790 start-page: 368 year: 2016 end-page: 388 article-title: Reduced order prediction of rare events in unidirectional nonlinear water waves publication-title: J. Fluid Mech. – volume: 453 start-page: 1411 issue: 1962 year: 1997 end-page: 1443 article-title: A unified transform method for solving linear and certain nonlinear PDEs publication-title: Proc. Roy. Soc. London Ser. A – volume: 87 start-page: 052914 issue: 5 year: 2013 article-title: Generating mechanism for higher‐order rogue waves publication-title: Phys. Rev. E – volume: 85 start-page: 9 issue: 2 year: 2012 article-title: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions publication-title: Phys. Rev. E – volume: 43 start-page: 9 issue: 12 year: 2010 article-title: Rogue waves, rational solutions, the patterns of their zeros and integral relations publication-title: J. Phys. A – volume: 6 start-page: 790 issue: 10 year: 2010 end-page: 795 article-title: The Peregrine soliton in nonlinear fibre optics publication-title: Nat. Phys. – volume: 42 start-page: 895 issue: 7 year: 1989 end-page: 938 article-title: Direct and inverse scattering transforms with arbitrary spectral singularities publication-title: Comm. Pure Appl. Math. – year: 1987 – volume: 20 start-page: 966 issue: 4 year: 1989 end-page: 986 article-title: The Riemann‐Hilbert problem and inverse scattering publication-title: SIAM J. Math. Anal. – volume: 381 start-page: 1714 issue: 20 year: 2017 end-page: 1718 article-title: The height of an th‐order fundamental rogue wave for the nonlinear Schrödinger equation publication-title: Phys. Lett. A – volume: 137 start-page: 295 issue: 2 year: 1993 end-page: 368 article-title: A steepest descent method for oscillatory Riemann‐Hilbert problems. Asymptotics for the mKdV equation publication-title: Ann. of Math. (2) – volume: 185 start-page: 247 issue: 1 year: 2010 end-page: 258 article-title: On multi‐rogue wave solutions of the NLS equation and positon solutions of the KdV equation publication-title: Eur. Phys. J. Spec. Top. – volume: 54 start-page: 32 issue: 1 year: 2013 article-title: Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi‐rogue waves publication-title: J. Math. Phys. – volume: 69 start-page: 189 issue: 2 year: 1986 end-page: 194 article-title: Modulation instability and periodic solutions of the nonlinear Schrödinger equation publication-title: Teoret. Mat. Fiz. – volume: 131 start-page: 1 issue: 1 year: 2013 end-page: 40 article-title: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions publication-title: Stud. Appl. Math. – year: 2016 – year: 2018 – volume: 106 start-page: 4 issue: 20 year: 2011 article-title: Rogue wave observation in a water wave tank publication-title: Phys. Rev. Lett. – volume: 37 start-page: 39 issue: 1 year: 1984 end-page: 90 article-title: Scattering and inverse scattering for first order systems publication-title: Comm. Pure Appl. Math. – volume: 8 start-page: 226 issue: 3 year: 1974 end-page: 235 article-title: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I publication-title: Funct. Anal. Appl. – volume: 54 start-page: 849 issue: 3 year: 1976 end-page: 864 article-title: Closure of the squared Zakharov‐Shabat eigenstates publication-title: J. Math. Anal. Appl. – volume: 57 start-page: 3510 issue: 3 year: 1998 end-page: 3519 article-title: Breather solutions to the focusing nonlinear Schrödinger equation publication-title: Phys. Rev. E (3) – volume: 22 start-page: 507 issue: 9 year: 1977 end-page: 508 article-title: Solitons in parametrically unstable plasma publication-title: Dokl. Akad. Nauk SSR. – volume: 25 start-page: 16 issue: 1 year: 1983 end-page: 43 article-title: Water waves, nonlinear Schrödinger equations and their solutions publication-title: J. Austral. Math. Soc. Ser. B – volume: 53 start-page: 249 issue: 4 year: 1974 end-page: 315 article-title: The inverse scattering transform‐Fourier analysis for nonlinear problems publication-title: Studies in Appl. Math. – volume: 55 start-page: 22 issue: 3 year: 2014 article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions publication-title: J. Math. Phys. – volume: 44 start-page: 485 issue: 5 year: 1991 end-page: 533 article-title: Direct and inverse scattering on the line with arbitrary singularities publication-title: Comm. Pure Appl. Math. – volume: 36 start-page: 112 issue: 2 year: 2011 end-page: 114 article-title: Peregrine soliton generation and breakup in standard telecommunications fiber publication-title: Opt. Lett. – volume: 60 start-page: 951 issue: 7 year: 2007 end-page: 1026 article-title: The ‐soliton of the focusing nonlinear Schrödinger equation for large publication-title: Comm. Pure Appl. Math. – volume: 70 start-page: 2300 issue: 12 year: 2017 end-page: 2365 article-title: Long‐time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability publication-title: Comm. Pure Appl. Math. – year: 2008 – volume: 80 start-page: 026601 issue: 2 year: 2009 article-title: Rogue waves and rational solutions of the nonlinear Schrödinger equation publication-title: Phys. Rev. E. – volume: 66 start-page: 678 issue: 5 year: 2013 end-page: 752 article-title: Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I publication-title: Comm. Pure Appl. Math. – volume: 119 start-page: 6 issue: 3 year: 2017 article-title: Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. – volume: 7 start-page: 13136 year: 2016 article-title: Single‐shot observation of optical rogue waves in integrable turbulence using time microscopy publication-title: Nat. Commun. – volume: 60 start-page: 43 issue: 1 year: 1979 end-page: 58 article-title: The perturbed plane‐wave solutions of the cubic Schrödinger equation publication-title: Stud. Appl. Math. – year: 2017 – year: 1991 – year: 1955 – volume: 482 start-page: 012016 issue: 1 year: 2014 article-title: Higher order Peregrine breathers, their deformations and multi‐rogue waves publication-title: J. Phys. Conf. Ser. – volume: 114 start-page: 5 issue: 14 year: 2015 article-title: Optical rogue waves in integrable turbulence publication-title: Phys. Rev. Lett. – ident: e_1_2_1_22_1 doi: 10.1063/1.4773096 – ident: e_1_2_1_35_1 – ident: e_1_2_1_42_1 doi: 10.1007/BF01075696 – ident: e_1_2_1_37_1 doi: 10.1038/ncomms13136 – ident: e_1_2_1_17_1 doi: 10.1111/j.1467-9590.2012.00572.x – ident: e_1_2_1_10_1 doi: 10.1002/cpa.21701 – ident: e_1_2_1_27_1 doi: 10.1103/PhysRevE.87.052914 – ident: e_1_2_1_18_1 doi: 10.1140/epjst/e2010-01252-9 – ident: e_1_2_1_34_1 doi: 10.1007/978-3-662-00922-2 – ident: e_1_2_1_28_1 doi: 10.1016/0022-247X(76)90201-8 – ident: e_1_2_1_5_1 doi: 10.1088/1751-8113/43/12/122002 – ident: e_1_2_1_33_1 doi: 10.1002/sapm197960143 – ident: e_1_2_1_21_1 doi: 10.1137/1.9780898717068 – ident: e_1_2_1_30_1 doi: 10.1038/nphys1740 – ident: e_1_2_1_39_1 doi: 10.1103/PhysRevLett.119.033901 – ident: e_1_2_1_19_1 doi: 10.1007/978-3-540-69969-9 – ident: e_1_2_1_7_1 doi: 10.1002/cpa.21445 – volume-title: Theory of ordinary differential equations year: 1955 ident: e_1_2_1_13_1 – ident: e_1_2_1_25_1 doi: 10.1515/9783110470574 – ident: e_1_2_1_40_1 doi: 10.1103/PhysRevLett.114.143903 – volume: 69 start-page: 189 issue: 2 year: 1986 ident: e_1_2_1_4_1 article-title: Modulation instability and periodic solutions of the nonlinear Schrödinger equation publication-title: Teoret. Mat. Fiz. – ident: e_1_2_1_11_1 doi: 10.1103/PhysRevLett.112.124101 – ident: e_1_2_1_6_1 doi: 10.1002/cpa.3160370105 – ident: e_1_2_1_38_1 doi: 10.1103/PhysRevE.57.3510 – ident: e_1_2_1_12_1 doi: 10.1103/PhysRevLett.106.204502 – ident: e_1_2_1_26_1 doi: 10.1364/OL.36.000112 – ident: e_1_2_1_41_1 doi: 10.1016/j.physleta.2017.03.023 – ident: e_1_2_1_24_1 doi: 10.1103/PhysRevE.85.026607 – ident: e_1_2_1_2_1 doi: 10.1002/sapm1974534249 – ident: e_1_2_1_8_1 – ident: e_1_2_1_16_1 doi: 10.2307/2946540 – ident: e_1_2_1_14_1 doi: 10.1017/jfm.2016.13 – volume: 22 start-page: 507 issue: 9 year: 1977 ident: e_1_2_1_31_1 article-title: Solitons in parametrically unstable plasma publication-title: Dokl. Akad. Nauk SSR. – ident: e_1_2_1_3_1 doi: 10.1103/PhysRevE.80.026601 – ident: e_1_2_1_29_1 doi: 10.1007/978-3-540-88419-4_5 – ident: e_1_2_1_20_1 doi: 10.1098/rspa.1997.0077 – ident: e_1_2_1_43_1 doi: 10.1002/cpa.3160420702 – ident: e_1_2_1_15_1 doi: 10.1002/cpa.3160440502 – ident: e_1_2_1_9_1 doi: 10.1063/1.4868483 – ident: e_1_2_1_32_1 doi: 10.1002/cpa.20162 – ident: e_1_2_1_44_1 doi: 10.1137/0520065 – ident: e_1_2_1_23_1 doi: 10.1088/1742-6596/482/1/012016 – ident: e_1_2_1_36_1 doi: 10.1017/S0334270000003891 |
SSID | ssj0011483 |
Score | 2.6043696 |
Snippet | We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1722 |
SubjectTerms | Asymptotic methods Asymptotic properties Boundary conditions Dynamic stability Inverse scattering Schrodinger equation Singularity (mathematics) Structural stability Transformations (mathematics) |
Title | A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21819 https://www.proquest.com/docview/2242716647 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz34LU6nBPHgpVs_0i88jbExhA2Zm-wglCRNFJRttt3FP8x_wH_MvKbtVBTES-jhpU3z8vJ-fX35PYQulMtmjiVjw-bSN4jtMyMQvgNxKyqJbTKHQWhgOPIGU3I9c2c1dFWehdH8EFXADSwj36_BwClL22vSUL6kLfBPcHgPcrUAEI0r6iiA-frvMuwzHjFLViHTblc9v_qiNcD8DFNzP9PfRvflCHV6yVNrlbEWf_1G3vjPV9hBWwX-xB29YHZRTcz30OawIm9N99FdB48XbJVmGEg4klTgW56zcCovhycl0MWqwaoX7i84JM8_4JEeEk2U_GPy_hbnEUPce9Fs4gdo2u9NugOjKL9gcAcSqULqckGUu-exDB3pc8-nnmQKLzDi0JgCWnCFxT0BjJMi8GOp4JnLuRUG3KLSOUT1-WIujhAWgWMKErgxDSwiCaXcchlUKhOcqdZsoMtSEREvuMmhRMZzpFmV7UhNVZRPVQOdV6JLTcjxk1Cz1GZU2GQaKbBiq69Dj_jqcblafr9B1L3p5BfHfxc9QRsKTYU6O7CJ6lmyEqcKsWTsLF-aH8mj59I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcoC2teBaraiUuWfJwHnvgsAJWS2FXFV0qbsF27CKBdmGzK9T-Js78Ac78J2biJFDUSr1w6MXKwXESj8ffzGT8DcAnhGwZeCZzfGVih_uxdBIdBxS3Eob7rgwkhQa6vahzxL8ch8dTcF2dhbH8EHXAjTSj2K9JwSkgvfnAGqouRIMAqlmmVO7rn1fosOVbezso3c--397tb3ecsqaAowLKDmqKUGmOGKYy0wxMrKJYREYiCEoeiEwQBIbaU5EmGkWdxJlBmyNUCp1z5QkT4LgvYIYqiBNT_85hTVZFjoX9n007W8TdisfI9TfrV_0d_R5M2seGcYFs7Xm4q-bEJrScNSZj2VC_ntBF_i-T9hrmShObtaxOvIEpPXgLs92anzZfgO8tdjiUk3zMiGdklGv2TRVEowjkrF_Z8gwbhnex9lDR-YAfrGfnQIyw_-no9iYrgqJs99ISpr-Do2f5sPcwPRgO9CIwnQSu5kmYicTjhguhvFBSMTatJLbuEmxUkk9VSb9OVUDOU0sc7acomrQQzRJ8rLteWM6RP3VarZZPWm47eYr2mI8OcMRjfFyxDv4-QLr9tVVcLP9713V42el3D9KDvd7-CrxC47FpkyFXYXo8mug1NNDG8kOhFwxOnntN3QPhJkY4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRA9lPKoSrsUC4HEJbt5OK8Dh9UuK54rxEvcgu3YRaLa3W52VbV_iTt_gCs_inGchIJA4sKBi5WD4yQej7-ZyfgbgDWEbO45KrVcoUKLuiG3Ihl6Om7FFHVt7nEdGjjoBtundPfcP5-A6_IsjOGHqAJuWjPy_Vor-CBVjQfSUDFgdY1PcZFRuSf__kF_LdvcaaNw1123s3XS2raKkgKW8HRyUMx8ISlCmEhV7KlQBCELFEcM5NRjKdMI6EtHBFKzKMooTBWaHL4Q6JsLhykPx52EDzSwY10non1UcVVpv8L8ztYbW0DtksbIdhvVqz4GvweL9n-7OAe2zizclVNi8lmu6uMRr4t_T9gi38mcfYZPhYFNmkYj5mBC9ubh40HFTpstwFmTHPX5OBsRzTIyzCQ5FjnNKMI4OSkteYINwbtIpy_06YCfpGumgA2x_-Xw9ibNQ6Jk67ehS1-E0zf5sC8w1ev35FcgMvJsSSM_ZZFDFWVMOD7Xpdik4NjaS7BRCj4RBfm6rgHyKzG00W6Cokly0SzBatV1YBhHnutUK1dPUmw6WYLWmIvub0BDfFy-DF4eIGkdNvOLb6_vugLTh-1Osr_T3fsOM2g5xiYTsgZTo-FYLqN1NuI_cq0gcPHWS-oeshZE5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Inverse+Scattering+Transform+for+the+Focusing+Nonlinear+Schr%C3%B6dinger+Equation&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Bilman%2C+Deniz&rft.au=Miller%2C+Peter+D.&rft.date=2019-08-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=72&rft.issue=8&rft.spage=1722&rft.epage=1805&rft_id=info:doi/10.1002%2Fcpa.21819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |