A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation

We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe sp...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 72; no. 8; pp. 1722 - 1805
Main Authors Bilman, Deniz, Miller, Peter D.
Format Journal Article
LanguageEnglish
Published New York John Wiley and Sons, Limited 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21819