Basic fibroblast growth factor: An autocrine growth factor for epiphyseal growth plate chondrocytes
Basic fibroblast growth factor (bFGF) is a permissive mitogen for cultured chondrocytes and has been localized in the specific zones of the epiphyseal growth plate. In this study, we demonstrate that bFGF present in cartilage originates from within the cellular constituents of this tissue. Utilizing...
Saved in:
Published in | Journal of cellular biochemistry Vol. 62; no. 3; pp. 372 - 382 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Basic fibroblast growth factor (bFGF) is a permissive mitogen for cultured chondrocytes and has been localized in the specific zones of the epiphyseal growth plate. In this study, we demonstrate that bFGF present in cartilage originates from within the cellular constituents of this tissue. Utilizing reverse transcription coupled to the polymerase chain reaction (PCR), bFGF mRNA was found in extracts of cartilage tissue. Immunocytochemical studies revealed that bFGF was present intracellularly in freshly isolated proliferative chondrocytes and in the extracellular matrix (ECM) after 24 h of culture. Western blot analysis of protein extracts from isolated proliferative chondrocytes identified a bFGF immunoreactive species with a molecular weight of approximately 18 kDa. In situ hybridization confirmed the presence of bFGF mRNA in freshly isolated proliferative chondrocytes. The bFGF in the ECM seemed to be sequestered and not available for biological activity, since these cells still required exogenous bFGF for cell proliferation. This sequestered bFGF could be released to stimulate cell proliferation when cultures were treated with plasmin, a proteolytic enzyme. These data support the hypothesis that bFGF is synthesized by chondrocytes and functions as an autocrine/paracrine mitogen via its deposition into the ECM with subsequent release from the ECM of cartilage being a critical step in biological activity. In addition, the study provides further evidence that locally produced bFGF plays an important role in normal growth and development of cartilage tissue. © 1996 Wiley‐Liss, Inc. |
---|---|
Bibliography: | ArticleID:JCB7 BARD - No. US-2117-92 istex:28AD9246350F512BFA4C35A7BD43283A69DF3983 ark:/67375/WNG-77SZBMG5-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0730-2312 1097-4644 |
DOI: | 10.1002/(SICI)1097-4644(199609)62:3<372::AID-JCB7>3.0.CO;2-O |