Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation

Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization (HCI) to mice with normal or high-fat diet (HFD) and evaluated intramyocellular lipids and the insulin signaling pathway in the soleu...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 321; no. 6; pp. E766 - E781
Main Authors Kakehi, Saori, Tamura, Yoshifumi, Ikeda, Shin-Ichi, Kaga, Naoko, Taka, Hikari, Ueno, Noriko, Shiuchi, Tetsuya, Kubota, Atsushi, Sakuraba, Keishoku, Kawamori, Ryuzo, Watada, Hirotaka
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization (HCI) to mice with normal or high-fat diet (HFD) and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. Although 2-wk HFD alone did not alter intramyocellular diacylglycerol (IMDG) accumulation, HCI alone increased it by 1.9-fold and HCI after HFD further increased it by 3.3-fold. Parallel to this, we found increased protein kinase C ε (PKCε) activity, reduced insulin-induced 2-deoxyglucose (2-DOG) uptake, and reduced phosphorylation of insulin receptor β (IRβ) and Akt, key molecules for insulin signaling pathway. Lipin1, which converts phosphatidic acid to diacylglycerol, showed increase of its activity by HCI, and dominant-negative lipin1 expression in muscle prevented HCI-induced IMDG accumulation and impaired insulin-induced 2-DOG uptake. Furthermore, 24-h leg cast immobilization in human increased lipin1 expression. Thus, even short-term immobilization increases IMDG and impairs insulin sensitivity in muscle via enhanced lipin1 activity. Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization to mice with normal or high-fat diet and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. We found that even short-term immobilization increases intramyocellular diacylglycerol and impairs insulin sensitivity in muscle via enhanced lipin1 activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00254.2020