Screen printing as a holistic manufacturing method for multifunctional microsystems and microreactors

Microsystems are commonly manufactured by photolithographic or injection moulding techniques in a variety of realizations and on almost any material. A perennial problem in the manufacturing of microsystems is the difficulty to obtain hybrid devices that incorporate distinct materials with different...

Full description

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 19; no. 11; pp. 115007 - 115007 (8)
Main Authors Bejarano, D, Lozano, P, Mata, D, Cito, S, Constantí, M, Katakis, I
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2009
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microsystems are commonly manufactured by photolithographic or injection moulding techniques in a variety of realizations and on almost any material. A perennial problem in the manufacturing of microsystems is the difficulty to obtain hybrid devices that incorporate distinct materials with different functionalities. In most of the cases, cumbersome prototyping and high investment needed for manufacturing are additional problems that add to the cost of the final product. Such drawbacks are true not only for lab-on-a-chip but also for certain microreactor applications. Most importantly, in many commercial applications where an intermediate product between full fluidics control and a 'strip' is needed, such restraints prohibit the feasibility of reduction to practice. Screen printing on the other hand is a low cost technique that has been used for years in mass producing two-dimensional low cost reproductions of a mask pattern for circuits and art incorporates prototyping in production and allows the use of an almost limitless variety of materials as 'inks'. In this work it is demonstrated that taking advantage of the deposited ink's three-dimensional nature, screen printing can be used as a versatile and low cost technique for the fabrication of microchannels. Microchannels with dimensions in the order of 100 mum were fabricated that could readily incorporate functionalities through the choice of the materials used to create the microstructure. Variables have been investigated through a factorial experimental design as important process parameters that affect the resolution and print thickness of the resulting microchannels that incorporate electroactive elements. Such studies can lead to the optimization of the process for custom applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/19/11/115007