Singular modules for affine Lie algebras, and applications to irregular WZNW conformal blocks
We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Sega...
Saved in:
Published in | Selecta mathematica (Basel, Switzerland) Vol. 29; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal–Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–Varchenko. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-022-00821-y |