Singular modules for affine Lie algebras, and applications to irregular WZNW conformal blocks

We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Sega...

Full description

Saved in:
Bibliographic Details
Published inSelecta mathematica (Basel, Switzerland) Vol. 29; no. 1
Main Authors Felder, Giovanni, Rembado, Gabriele
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal–Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–Varchenko.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-022-00821-y