CadC-mediated activation of the cadBA promoter in Escherichia coli

The transcriptional activator CadC in Escherichia coli, a member of the ToxR-like proteins, activates transcription of the cadBA operon encoding the lysine decarboxylase CadA and the lysine-cadaverine antiporter CadB. cadBA is induced under conditions of acidic external pH and exogenous lysine; anox...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular microbiology and biotechnology Vol. 10; no. 1; pp. 26 - 39
Main Authors Kuper, Christoph, Jung, Kirsten
Format Journal Article
LanguageEnglish
Published Switzerland S. Karger AG 01.01.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transcriptional activator CadC in Escherichia coli, a member of the ToxR-like proteins, activates transcription of the cadBA operon encoding the lysine decarboxylase CadA and the lysine-cadaverine antiporter CadB. cadBA is induced under conditions of acidic external pH and exogenous lysine; anoxic conditions raise the expression level up to 10 times. To characterize the binding mechanism of CadC, procedures for the purification of this membrane-integrated protein and its reconstitution into proteoliposomes were established. The binding sites of CadC upstream of the cadBA promoter region were determined by in vitro DNaseI protection analysis. Two regions were protected during DNaseI digestion, one from -144 to -112 bp, designated Cad1, and another one from -89 to -59 bp, designated Cad2. Binding of purified CadC to Cad1 and Cad2 was further characterized by DNA-binding assays, indicating that CadC was able to bind to both DNA fragments. Genetic analysis with promoter-lacZ fusions confirmed that both sites, Cad1 and Cad2, are essential for activation of cadBA transcription. Moreover, these experiments revealed that binding of H-NS upstream of the CadC-binding sites is necessary for repression of cadBA expression at neutral pH and under aerobic conditions. Based on these results, a model for transcriptional regulation of the cadBA operon is proposed, according to which H-NS is involved in the formation of a repression complex under non-inducing conditions. This complex is dissolved by binding of CadC to Cad1 under inducing conditions. Upon binding of CadC to Cad2 cadBA expression is activated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1464-1801
1660-2412
DOI:10.1159/000090346