Wavelet support vector machine for induction machine fault diagnosis based on transient current signal

This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using ke...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 35; no. 1; pp. 307 - 316
Main Authors Widodo, Achmad, Yang, Bo-Suk
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using kernel function is widely used for multi-class classification procedure. In this paper, building kernel function using wavelet will be introduced and applied for SVM multi-class classifier. Moreover, the feature vectors for training classification routine are obtained from transient current signal that preprocessed by discrete wavelet transform. In this work, principal component analysis (PCA) and kernel PCA are performed to reduce the dimension of features and to extract the useful features for classification process. Hence, a relatively new intelligent faults detection and classification method called W-SVM is established. This method is used to induction motor for faults classification based on transient current signal. The results show that the performance of classification has high accuracy based on experimental work.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2007.06.018