Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake

The traditional method to obtain phycocolloids from seaweeds implies successive extraction steps with cold and hot water. The residual cake derived from phycocolloids obtaining process of red seaweed Porphyra columbina is a waste containing 27 % protein and 10.7-mg gallic acid equivalents (100 g)⁻¹....

Full description

Saved in:
Bibliographic Details
Published inJournal of applied phycology Vol. 25; no. 4; pp. 1197 - 1206
Main Authors Cian, Raúl E, Alaiz, Manuel, Vioque, Javier, Drago, Silvina R
Format Journal Article
LanguageEnglish
Published Dordrecht Springer-Verlag 01.08.2013
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The traditional method to obtain phycocolloids from seaweeds implies successive extraction steps with cold and hot water. The residual cake derived from phycocolloids obtaining process of red seaweed Porphyra columbina is a waste containing 27 % protein and 10.7-mg gallic acid equivalents (100 g)⁻¹. Seaweeds contain functional proteins, and the enzymatic hydrolysis of these proteins has been shown to release bioactive peptides. The aims of this study were to extract bioactive peptides and polyphenols after enzymatic hydrolysis of the residual cake and to evaluate their ACE inhibitory and antioxidant capacities (TEAC, DPPH, and copper-chelating activity). Residual cake hydrolysate has low molecular weight peptides containing Asp, Glu, Ala, and Leu. Residual cake hydrolysate had higher protein solubility than residual cake. ACE inhibition (≈45 %) and radical scavenging activity (TEAC and DPPH inhibition) were attributed mainly to low molecular weight peptides (500 Da) and polyphenols compounds released during proteolysis. The 50 % inhibition protein concentration value (IC50) corresponded to residual cake hydrolysate was 1.01 ± 0.02 and 0.91 ± 0.01 g L⁻¹, for ABTS and DPPH, respectively. Also, residual cake hydrolysate had high copper-chelating activity (≈97.5 %). Hydrolysis could be used as a means to obtain ACE inhibitory and antioxidant compounds (peptides and polyphenols) from algae protein waste and add value to the phycocolloids extraction process.
Bibliography:http://dx.doi.org/10.1007/s10811-012-9913-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-012-9913-2