Fatigue behavior of Ti-6Al-4V alloy modified by plasma immersion ion implantation: temperature effect

This research studied Ti-6Al-4V alloy behavior with two (2) different microstructure subjected to nitrogen addition by PIII treatment, with and without sample heating, under cyclic load. PIII conditions, at 390 °C, were DC voltage of 9.5 kV, frequency of 1.5 kHz and pulse of 40 μs. PIII conditions,...

Full description

Saved in:
Bibliographic Details
Published inMATEC Web of Conferences Vol. 165; p. 14001
Main Authors Velloso, Verônica, Nozaki, Leonardo, Tapia, Diego, Cioffi, Maria Odila, Oliveira, Rogério, Barboza, Miguel, Voorwald, Herman
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research studied Ti-6Al-4V alloy behavior with two (2) different microstructure subjected to nitrogen addition by PIII treatment, with and without sample heating, under cyclic load. PIII conditions, at 390 °C, were DC voltage of 9.5 kV, frequency of 1.5 kHz and pulse of 40 μs. PIII conditions, with sample heating at 800 °C, were 7 kV, 0.4 kHz and 30 μs. Axial fatigue tests were performed on untreated and treated samples for resistance to fatigue comparison. The untreated Ti-6Al-4V had an annealed microstructure, PIII treatment at 390 °C resulted in a microstructure that has no nitride layer or diffusion zone. In the PIII treatment at 800 °C, the microstructure presented nitride layer and diffusion zone. Resistance to fatigue decreased with PIII treatments in both temperatures. At 390 °C, the treatment created deformation regions and cracks on surface due to nitrogen implantation that formed solid solution with titanium and imposed lattice strains on the crystal lattice. At 800 °C, bulk ductility decrease, increasing of αTi proportion in microstructure due to α case formation and the presence of a ceramic layer dropped fatigue resistance of Ti-6A-4V alloy.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201816514001