Long-Term Oxbow Lake Trophic State under Agricultural Best Management Practices

A key principle of agricultural best management practices (BMPs) is to improve water quality by reducing agricultural-sourced nutrients and associated eutrophication. Long-term (1998–2016) lake summer trophic state index (TSI) trends of an agricultural watershed with agricultural best management pra...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 13; no. 8; p. 1123
Main Authors Lizotte, Richard E., Yasarer, Lindsey M. W., Bingner, Ronald L., Locke, Martin A., Knight, Scott S.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A key principle of agricultural best management practices (BMPs) is to improve water quality by reducing agricultural-sourced nutrients and associated eutrophication. Long-term (1998–2016) lake summer trophic state index (TSI) trends of an agricultural watershed with agricultural best management practices (BMPs) were assessed. Structural BMPs included vegetative buffers, conservation tillage, conservation reserve, a constructed wetland, and a sediment retention pond. TSI included Secchi visibility (SD), chlorophyll a (Chl), total phosphorus (TP), and total nitrogen (TN). Summer TSI 1977 was >80 in 1998–1999 (hypertrophic) and decreased over the first 10 years to TSI 1977 ≈ 75 (eutrophic). TSI 1977 decrease and changing TSI deviations coincided with vegetative buffers, conservation tillage, and conservation reserve. The TSI(SD) decrease (>90 to <70) coincided with vegetative buffers and TSI(TP) decrease (>90 to <75) coincided primarily with conservation tillage and the sediment retention pond. TSI(Chl) increase (<60 to >70) coincided with conservation tillage and vegetative buffer. Results indicate watershed-wide BMPs can modestly decrease summer trophic state through increased water transparency and decreased TP, but these changes are off-set by increases in chlorophyll a to reach a new stable state within a decade. Future research should assess algal nutrient thresholds, internal nutrient loading, and climate change effects.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13081123