Selenium Removal by Sediments and Plants at the Constructed Pariette Wetlands, Utah (USA)

Selenium (Se) contamination of public lands and water is a result of irrigated agriculture and mining activities in areas rich in Se geologic deposits. Pariette Draw is part of the northern Colorado Plateau and is an area of concern for Se contamination in the Pariette Wetlands. Pariette Wetlands, a...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 15; no. 9; p. 1728
Main Authors Jones, Colleen, Amacher, Michael, Grossl, Paul, Jacobson, Astrid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Selenium (Se) contamination of public lands and water is a result of irrigated agriculture and mining activities in areas rich in Se geologic deposits. Pariette Draw is part of the northern Colorado Plateau and is an area of concern for Se contamination in the Pariette Wetlands. Pariette Wetlands, a wetland built in the 1970s to provide wildlife habitat, is distinguished by its arid climate and a short growing season of hot dry summers followed by cold winters with several months below freezing. An understanding of how Se is mobilized and removed within the wetland will provide management strategies that minimize and mitigate Se contamination and promote sustainable ecosystem services. The data collected in 2012 and 2014 was the first comprehensive spatial and temporal analysis of Se in all environmental compartments (bird eggs, macroinvertebrates, plants, sediments, and water) of an arid wetland ecosystem in the Colorado Plateau. Water, sediment, and plant tissue samples were collected and analyzed to determine Se’s spatial and temporal variation in Pariette Wetlands. Se concentrations in water, sediment, and plants were evenly distributed throughout wetlands. No significant differences were found in plant Se concentrations between samples collected in 2012 (447 ± 44 ug kg−1) or 2014 (541 ± 42 μg kg−1), indicating that plant Se did not vary temporally during sampling. Aquatic plant species (e.g., pondweed (Potamogeton filiformis), 743 ± 66 μg kg−1 and watermilfoil (Myriophyllum spicatum), 874 ± 122 μg kg−1) accumulated more Se than plant species growing at the edges of the ponds (e.g., hardstem bulrush (Schoenoplectus acutus), 368 ± 37 μg kg−1 and cattail (Typha), 420 ± 43 μg kg−1). Plant roots (1045 ± 110 μg kg−1) accumulated more Se than aboveground vegetation (flowers, 228 ± 17 μg kg−1 or stems, 224 ± 19 μg kg−1). Relative to Se retained by sediments (75%), plants were not an extensive reservoir of wetland Se (<5%) but still may pose a risk to animals feeding on plant tissue. Thus, phytoremediation of Se does not appear to be a viable tool for Se mitigation in wetlands of arid climates with a short growing season, such as those located in the Colorado Plateau.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15091728