A novel formaldehyde-free wood adhesive synthesized by straw soda lignin and polyethyleneimine

To eliminate toxic formaldehyde from wood-based panels, a new formaldehyde-free wood adhesive (named OL/PEI adhesive) was synthesized by a reaction of oxidized lignin (OL) and polyethylenimine (PEI) reaction in the presence of sodium periodate. The curing mechanism of the OL/PEI adhesive was clarifi...

Full description

Saved in:
Bibliographic Details
Published inBioresources Vol. 18; no. 2; pp. 3123 - 3143
Main Authors Peng, Wenyao, Dong, Cunjun, An, Junjian, Zhang, Guangyan, Wang, Peng, Xie, Yimin
Format Journal Article
LanguageEnglish
Published Raleigh North Carolina State University 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To eliminate toxic formaldehyde from wood-based panels, a new formaldehyde-free wood adhesive (named OL/PEI adhesive) was synthesized by a reaction of oxidized lignin (OL) and polyethylenimine (PEI) reaction in the presence of sodium periodate. The curing mechanism of the OL/PEI adhesive was clarified by Fourier transform infrared spectroscopy (FTIR) and solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS13C-NMR) spectroscopy. The results showed that the sodium periodate could selectively oxidize wheat straw lignin to produce the ortho-quinone, and then the ortho-quinone in OL could further react with amino groups in PEI to form the OL/PEI adhesive. The as-prepared poplar particleboard was investigated with regard to hot-pressing temperature, the hot-pressing time, the OL/PEI weight ratio, and the dosage of OL/PEI adhesive. Under the optimum conditions, e.g., hot pressing temperature of 180 °C, hot pressing time of 13 min, the OL/PEI weight ratio of 1:1, and the dosage of 10%, OL/PEI adhesive was found to disperse evenly into the voids among the shavings of poplar particleboard, followed by the curing of OL/PEI adhesive using hot-pressing to form tightly bonds between the shavings. The resulting particleboard reached the requirement of mechanical properties (GB/T 4897.3-2003), higher water resistance properties, and better heating resistivity. This study demonstrated a new way to produce a formaldehyde-free wood adhesive with unique properties. This material could replace formaldehyde wood adhesive in wood bonding.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.18.2.3123-3143