Indirect identification of bridge frequencies using a four-wheel vehicle: Theory and three-dimensional simulation

Indirect identification of bridge frequencies, which refers to identifying bridge frequencies from the dynamic response of a vehicle moving on the bridge, has the potential to fast inspect bridges in large quantities. Accurate analysis on the dynamic response of the vehicle used for sensing is cruci...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 177; p. 109155
Main Authors Jian, Xudong, Xia, Ye, Sun, Limin
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.09.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Indirect identification of bridge frequencies, which refers to identifying bridge frequencies from the dynamic response of a vehicle moving on the bridge, has the potential to fast inspect bridges in large quantities. Accurate analysis on the dynamic response of the vehicle used for sensing is crucial to the indirect frequency identification. Most published research on this topic, however, is based on a simplified two-dimensional (2D) analysis of vehicle–bridge interaction (VBI), which cannot fully reproduce the mechanism of a real three-dimensional (3D) vehicle. As a complement, this study carries out the 3D simulation of VBI and accordingly proposes a novel frequency-domain method to identify bridge natural frequencies from the vertical acceleration of a full-car model’s wheels. The wheels’ equations of motion are first transferred into the frequency domain, then the frequency responses of the front and rear wheels are subtracted with a time lag to eliminate the adverse effect of road roughness. Also proposed by this study is a new method to identify the speed of the sensing vehicle with the correlation function of wheel acceleration so that the time lag for subtraction can be calculated. In order to investigate the performance of the proposed methods, a series of numerical simulations are conducted, including sensitivity analysis on the vehicle speed, the class of road roughness, the noise level, and the vehicle frequency. Finally, this paper remarks on the accuracy and robustness of the proposed method and challenges faced by the engineering practice of the indirect bridge structural identification methodology. •3D numerical simulation of the vehicle–bridge interaction.•A frequency-domain method to identify bridge frequencies from the acceleration of a 3D full-car model.•A method to identify vehicle speed from the cross-correlation function of the acceleration of two wheels.
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2022.109155