A New Subject-Sensitive Hashing Algorithm Based on MultiRes-RCF for Blockchains of HRRS Images

Aiming at the deficiency that blockchain technology is too sensitive to the binary-level changes of high resolution remote sensing (HRRS) images, we propose a new subject-sensitive hashing algorithm specially for HRRS image blockchains. To implement this subject-sensitive hashing algorithm, we desig...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 15; no. 6; p. 213
Main Authors Ding, Kaimeng, Chen, Shiping, Yu, Jiming, Liu, Yanan, Zhu, Jie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aiming at the deficiency that blockchain technology is too sensitive to the binary-level changes of high resolution remote sensing (HRRS) images, we propose a new subject-sensitive hashing algorithm specially for HRRS image blockchains. To implement this subject-sensitive hashing algorithm, we designed and implemented a deep neural network model MultiRes-RCF (richer convolutional features) for extracting features from HRRS images. A MultiRes-RCF network is an improved RCF network that borrows the MultiRes mechanism of MultiResU-Net. The subject-sensitive hashing algorithm based on MultiRes-RCF can detect the subtle tampering of HRRS images while maintaining robustness to operations that do not change the content of the HRRS images. Experimental results show that our MultiRes-RCF-based subject-sensitive hashing algorithm has better tamper sensitivity than the existing deep learning models such as RCF, AAU-net, and Attention U-net, meeting the needs of HRRS image blockchains.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a15060213