Multiple stressor effects on alpha, beta and zeta diversity of riverine fish

We examined the effects of regional scale land use and local scale environmental and biotic stressors on alpha, beta and zeta diversities of native fish communities in wadeable streams and non-wadeable rivers in the Danube basin, Hungary. Relationships among land use and local scale environmental an...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 748; p. 141407
Main Authors Erős, Tibor, Czeglédi, István, Tóth, Rita, Schmera, Dénes
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examined the effects of regional scale land use and local scale environmental and biotic stressors on alpha, beta and zeta diversities of native fish communities in wadeable streams and non-wadeable rivers in the Danube basin, Hungary. Relationships among land use and local scale environmental and biotic stressors were weak both in streams and rivers, suggesting that these stressors act relatively independently. Alpha diversity decreased strongly with increasing local scale environmental stressor intensity in rivers. On the contrary, its response to stressors was more obscure in streams, where the best-fit statistical model indicated the importance of the interaction between land use, local scale environmental and biotic stressors, while the secondly ranked model highlighted the negative impact of local scale environmental stressors. Analysis of variance using distance matrices provided evidence that stressors alone and in interactions explained compositional differences of pairs of study sites (beta diversity). Considering the degree of overall degradation, both local (alpha) and among-site (beta and zeta) diversity indices responded to increasing stressor intensity, generally negatively. Riverine fish communities showed higher degrees of similarity (lower beta and higher zeta) than stream fish communities. They also showed increasing similarity (i.e. homogenization) with increasing overall stressor intensity, unlike stream fish communities, which showed no relationship with overall stressor intensity. Our results suggest that the relationships between land use and local scale environmental and biotic stressors can be complex and so do their effects on biodiversity. While stressor specific indices can provide information on the role of specific stressors in some cases, the examination of overall stressor effects is needed to assess realistically the effects of anthropogenic disturbances on native fish diversity. Diversity indices that quantify among-site changes in species composition, such as measures of beta and zeta diversity, can be fruitful for better understanding the role of multiple stressors in structuring ecological communities. [Display omitted] •We examined the response of fish diversity to land use, local and biotic stressors.•Intensity of stressors varied relatively independently in both streams and rivers.•Alpha and beta diversities were affected by both individual and interactive effects.•Zeta diversity indicated a homogenized fauna in the most degraded river sites.•Overall effect of stressors was inconsistent in streams and negative in rivers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.141407