Young grapevines exhibit interspecific differences in hydraulic response to freeze stress but not in recovery
Sub-freezing temperatures after budburst represent a major threat for the cultivation of fruit crops in temperate regions. Freeze stress might disrupt xylem hydraulic functionality and plant growth; however, it is unclear if hydraulic traits influence the ability of woody plants to cope with freeze...
Saved in:
Published in | Planta Vol. 250; no. 2; pp. 495 - 505 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Science + Business Media
01.08.2019
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sub-freezing temperatures after budburst represent a major threat for the cultivation of fruit crops in temperate regions. Freeze stress might disrupt xylem hydraulic functionality and plant growth; however, it is unclear if hydraulic traits influence the ability of woody plants to cope with freeze stress. We investigated if a grapevine species (Vitis hybrid) with earlier budburst had anatomical traits that cause higher freeze-induced hydraulic failure but also confer a greater ability for seasonal recovery compared to a Vitis vinifera species. Two-year-old Vitis hybrid and vinifera grapevines were containergrown outdoors, assigned to either a control (n = 40) or a freeze-stressed (n = 40) treatment and exposed to a controlledtemperature (-4 °C) freeze stress shortly after budburst. We found that the Vitis hybrid had greater stem-specific hydraulic conductivity (Ks) and was more vulnerable to freeze-induced embolism compared to the V. vinifera species, which exhibited a less efficient but safer water transport strategy. Seventy-two hours after the freeze stress, Ks
of freeze-stressed V. vinifera was 77.8% higher than that of the control, indicating hydraulic recovery. While the two species did not differ in xylem vessel diameter, Vitis hybrid exhibited higher vessel frequency and percentage of vessel grouping, which could explain its higher K s and greater freeze-induced Ks
loss compared to the V. vinifera vines. While the two species varied in the short-term hydraulic response, they exhibited similar and full hydraulic and vegetative recovery by midseason, including bud freeze tolerance during the following fall and mid-winter. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/s00425-019-03183-6 |