Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries
Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 7; pp. 3084 - 3090 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m
2
g
−1
and a pore volume of 0.179 cm
3
g
−1
. These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g
−1
(current density of 50 mA g
−1
), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g
−1
at current densities of 50, 100 and 200 mA g
−1
, respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices. |
---|---|
AbstractList | Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m² g⁻¹ and a pore volume of 0.179 cm³ g⁻¹. These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g⁻¹ (current density of 50 mA g⁻¹), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g⁻¹ at current densities of 50, 100 and 200 mA g⁻¹, respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices. Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m 2 g −1 and a pore volume of 0.179 cm 3 g −1 . These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g −1 (current density of 50 mA g −1 ), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g −1 at current densities of 50, 100 and 200 mA g −1 , respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices. Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m2 g−1 and a pore volume of 0.179 cm3 g−1. These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g−1 (current density of 50 mA g−1), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g−1 at current densities of 50, 100 and 200 mA g−1, respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices. |
Author | Zhang, Guohua Jiao, Shuqiang Li, Shijie Wang, Shuai Zhang, Xuefeng |
Author_xml | – sequence: 1 givenname: Xuefeng surname: Zhang fullname: Zhang, Xuefeng organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China – sequence: 2 givenname: Guohua surname: Zhang fullname: Zhang, Guohua organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China – sequence: 3 givenname: Shuai surname: Wang fullname: Wang, Shuai organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China – sequence: 4 givenname: Shijie surname: Li fullname: Li, Shijie organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China – sequence: 5 givenname: Shuqiang orcidid: 0000-0001-9600-752X surname: Jiao fullname: Jiao, Shuqiang organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China |
BookMark | eNptkEFLAzEQhYNUsGov_oKAFxFWJ9lmkz2WolUo1EM9L2k666bsbmqSPfjvTakoFOfyBt43w8y7JKPe9UjIDYMHBnn5OJfrGYMi54szMuYgIJPTshj99kpdkEkIO0ilAIqyHBN8c94Ngc6HFe2s8S7sG_RItTeNjWji4DFQHWhjP5psj752vtO9QWp0bNwWaacjeqvbQJNFdTt0th-6zLqebnQ8eBiuyXmdCJz86BV5f35az1-y5WrxOp8tM5OXMmac10rmWEyFmhZJhSnElNXGbE2tjEa9UUKqWiBoud0ohQWUZqNzYJJLUGV-Re6Oe_fefQ4YYtXZYLBtdY_py4rzXArOWSESenuC7tzg-3RdxYFBCTkTPFH3R-qQTPBYV3tvO-2_KgbVIfTqL_QEwwlsbNQxJRG9tu1_I9-f-YY2 |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126359 crossref_primary_10_1039_C9TA00762H crossref_primary_10_1016_j_triboint_2020_106561 crossref_primary_10_1016_j_ccr_2022_214856 crossref_primary_10_3390_batteries9020092 crossref_primary_10_1002_ange_202405750 crossref_primary_10_1039_C9NR06481H crossref_primary_10_1016_j_electacta_2021_139498 crossref_primary_10_2298_PAC2201064W crossref_primary_10_1038_s41598_019_50156_6 crossref_primary_10_1126_sciadv_abg6314 crossref_primary_10_1021_acsami_0c12389 crossref_primary_10_1039_D4GC04505J crossref_primary_10_1039_D1QI01474A crossref_primary_10_1016_j_ensm_2022_02_026 crossref_primary_10_1002_smll_202204121 crossref_primary_10_1149_1945_7111_ad1c12 crossref_primary_10_1016_j_compositesb_2021_109083 crossref_primary_10_1039_C8TA11132D crossref_primary_10_1021_acs_chemrev_0c01257 crossref_primary_10_1021_acsaem_0c02797 crossref_primary_10_1016_j_jelechem_2024_118234 crossref_primary_10_1039_D0TA00674B crossref_primary_10_1016_j_ensm_2023_102922 crossref_primary_10_1016_j_pmatsci_2022_100960 crossref_primary_10_1051_epjap_2023230062 crossref_primary_10_1021_acssuschemeng_8b06063 crossref_primary_10_1016_j_ceramint_2020_07_233 crossref_primary_10_1016_j_electacta_2020_136677 crossref_primary_10_1002_adma_202004920 crossref_primary_10_2139_ssrn_3995823 crossref_primary_10_1002_anie_202114681 crossref_primary_10_1016_j_jallcom_2019_152864 crossref_primary_10_1016_j_ensm_2020_05_029 crossref_primary_10_1016_j_cej_2020_125679 crossref_primary_10_1021_acsaem_0c00921 crossref_primary_10_1021_acsaem_2c02010 crossref_primary_10_1142_S0217984923501427 crossref_primary_10_1002_anie_202405750 crossref_primary_10_1002_celc_201900965 crossref_primary_10_1016_j_nantod_2020_100870 crossref_primary_10_1021_acs_jpclett_0c00324 crossref_primary_10_1007_s11426_021_1105_5 crossref_primary_10_1016_j_pmatsci_2024_101322 crossref_primary_10_1016_j_jelechem_2022_117014 crossref_primary_10_1039_C8EN00930A crossref_primary_10_1016_j_jpowsour_2019_227173 crossref_primary_10_1016_j_ensm_2022_01_019 crossref_primary_10_1016_j_nanoen_2020_105384 crossref_primary_10_1016_j_cej_2020_126000 crossref_primary_10_1002_ange_202114681 crossref_primary_10_54227_mlab_20220055 crossref_primary_10_1007_s10853_023_08668_0 crossref_primary_10_1039_D2TA04165K crossref_primary_10_1016_j_electacta_2024_145196 crossref_primary_10_1149_1945_7111_ab9405 crossref_primary_10_1039_C9EE00862D crossref_primary_10_1007_s12274_022_4517_x crossref_primary_10_1016_j_mtsust_2022_100213 crossref_primary_10_1016_j_jssc_2023_124511 crossref_primary_10_1002_adfm_202010569 crossref_primary_10_1002_adfm_202010445 crossref_primary_10_1016_j_mattod_2022_09_005 crossref_primary_10_1007_s10854_021_06249_y crossref_primary_10_1039_C9TA01550G crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1002_slct_202204575 crossref_primary_10_1016_j_gee_2021_11_009 crossref_primary_10_1093_nsr_nwaa178 crossref_primary_10_1039_C9NJ05682C crossref_primary_10_1021_acssuschemeng_9b06193 crossref_primary_10_1039_D0QI01302A crossref_primary_10_1021_acsami_2c09765 crossref_primary_10_1002_batt_202300298 crossref_primary_10_1111_jace_16147 crossref_primary_10_1039_C9SE00941H crossref_primary_10_1039_D1SE01469B crossref_primary_10_34133_2021_9204217 crossref_primary_10_1016_j_ensm_2019_03_028 crossref_primary_10_1016_j_electacta_2021_137790 crossref_primary_10_5004_dwt_2022_28794 crossref_primary_10_1016_j_cej_2021_129131 crossref_primary_10_1002_adfm_201909565 crossref_primary_10_1016_j_jechem_2020_09_015 crossref_primary_10_1021_acsami_3c17248 crossref_primary_10_1039_D1RA08067A crossref_primary_10_3390_batteries8090105 crossref_primary_10_1002_chem_202303892 crossref_primary_10_1002_aenm_202201653 crossref_primary_10_1039_C9NJ03626A crossref_primary_10_1007_s00604_020_04238_2 crossref_primary_10_1039_D1QM01267C crossref_primary_10_1115_1_4045784 crossref_primary_10_1002_adfm_202305511 crossref_primary_10_1016_j_ensm_2023_03_035 crossref_primary_10_1039_C9NR09944A crossref_primary_10_1021_acs_energyfuels_3c04112 crossref_primary_10_1016_j_joule_2021_12_003 crossref_primary_10_1021_acssuschemeng_8b05292 crossref_primary_10_1016_j_cej_2021_129385 crossref_primary_10_1002_smll_202201362 crossref_primary_10_1002_smll_201904310 crossref_primary_10_1016_j_ensm_2021_03_012 crossref_primary_10_1039_C8CP04772C crossref_primary_10_1016_j_est_2024_111287 crossref_primary_10_1016_j_jechem_2020_08_035 crossref_primary_10_1016_j_cej_2024_158528 crossref_primary_10_1016_j_jpowsour_2019_03_029 crossref_primary_10_1002_ente_201800550 crossref_primary_10_1002_aenm_202002151 crossref_primary_10_3103_S0003701X22030033 crossref_primary_10_1002_ente_201900649 crossref_primary_10_1002_slct_201903842 crossref_primary_10_1007_s11581_022_04530_6 crossref_primary_10_3390_nano10102024 crossref_primary_10_1021_acsmaterialslett_0c00208 crossref_primary_10_1007_s12678_018_0496_9 crossref_primary_10_1039_D1NA00214G crossref_primary_10_1002_admi_202200635 crossref_primary_10_1016_j_jallcom_2019_07_324 crossref_primary_10_1016_j_ensm_2021_10_044 crossref_primary_10_1039_C9SE00288J crossref_primary_10_2139_ssrn_4018807 crossref_primary_10_1016_j_jechem_2020_03_032 crossref_primary_10_1021_acs_jpcc_9b07509 crossref_primary_10_1016_j_ceramint_2022_09_241 crossref_primary_10_1016_j_cej_2021_133135 crossref_primary_10_1021_acsami_4c09943 crossref_primary_10_1016_j_electacta_2020_136174 crossref_primary_10_1002_adsu_202100418 crossref_primary_10_1016_j_jpowsour_2019_227147 crossref_primary_10_1021_acs_jpcc_9b09124 crossref_primary_10_1016_j_cej_2020_124370 crossref_primary_10_1021_acsanm_9b01391 |
Cites_doi | 10.1021/acsnano.6b00704 10.1021/am508001h 10.1002/adma.201601357 10.1038/381499a0 10.1149/1.2220730 10.1038/nature14340 10.1021/acs.chemmater.5b01918 10.1039/c2ee22987k 10.1002/adma.201604118 10.1016/j.jpowsour.2007.02.008 10.1039/C7RA03960C 10.1039/C6RA06467A 10.1021/jp106015t 10.1002/aenm.201600137 10.1038/srep03383 10.1021/acsnano.6b07995 10.1039/C5RA00035A 10.1039/C5CC00542F 10.1016/j.electacta.2016.01.047 10.1002/crat.201200143 10.1149/2.0181412jes 10.1039/C4RA15033C 10.1149/1.1379740 10.1002/adma.201602958 10.1016/j.carbon.2016.08.027 10.1002/adma.201605958 10.1038/ncomms14283 10.1016/j.apt.2015.12.008 10.1039/C6CE00117C 10.1021/acsnano.6b06446 10.1016/j.vacuum.2007.10.004 10.1016/j.electacta.2013.02.101 10.1039/C5RA16128B 10.1016/j.ceramint.2012.08.021 10.1016/j.nanoen.2016.06.043 10.1039/c3ta12621h 10.1016/j.tsf.2012.09.084 10.1039/C5EE03149D 10.1002/ente.201600125 10.1149/1.1498255 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C7TA10632G |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 3090 |
ExternalDocumentID | 10_1039_C7TA10632G |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c397t-22f873e6458463e65c6541fccdcf8caeab8578f5e0a7db88e609cba3017270893 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 06:10:52 EDT 2025 Mon Jun 30 12:01:23 EDT 2025 Tue Jul 01 03:13:47 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c397t-22f873e6458463e65c6541fccdcf8caeab8578f5e0a7db88e609cba3017270893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9600-752X |
PQID | 2010903152 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2237522165 proquest_journals_2010903152 crossref_primary_10_1039_C7TA10632G crossref_citationtrail_10_1039_C7TA10632G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Geng (C7TA10632G-(cit9)/*[position()=1]) 2015; 27 Chen (C7TA10632G-(cit18)/*[position()=1]) 2017; 29 Gao (C7TA10632G-(cit31)/*[position()=1]) 2010; 114 Sun (C7TA10632G-(cit19)/*[position()=1]) 2015; 51 Shi (C7TA10632G-(cit25)/*[position()=1]) 2015; 5 Wang (C7TA10632G-(cit8)/*[position()=1]) 2016; 6 Ohzuku (C7TA10632G-(cit4)/*[position()=1]) 1993; 140 Nasir (C7TA10632G-(cit29)/*[position()=1]) 2017; 7 Min (C7TA10632G-(cit30)/*[position()=1]) 2016; 27 Shackery (C7TA10632G-(cit26)/*[position()=1]) 2016; 191 Chen (C7TA10632G-(cit2)/*[position()=1]) 2002; 149 Jiao (C7TA10632G-(cit15)/*[position()=1]) 2016; 109 Yang (C7TA10632G-(cit17)/*[position()=1]) 2016; 6 Wu (C7TA10632G-(cit23)/*[position()=1]) 2013; 1 Wang (C7TA10632G-(cit22)/*[position()=1]) 2007; 167 Bhosale (C7TA10632G-(cit38)/*[position()=1]) 2016; 27 Senthilkumar (C7TA10632G-(cit33)/*[position()=1]) 2015; 5 Li (C7TA10632G-(cit40)/*[position()=1]) 2016; 9 Yan (C7TA10632G-(cit27)/*[position()=1]) 2016; 18 Stadie (C7TA10632G-(cit21)/*[position()=1]) 2017; 11 Endut (C7TA10632G-(cit34)/*[position()=1]) 2013; 528 Al-Kuhaili (C7TA10632G-(cit32)/*[position()=1]) 2008; 82 Elia (C7TA10632G-(cit6)/*[position()=1]) 2016; 28 Leising (C7TA10632G-(cit1)/*[position()=1]) 2001; 148 Gately (C7TA10632G-(cit28)/*[position()=1]) 2015; 5 Canas (C7TA10632G-(cit37)/*[position()=1]) 2013; 97 Li (C7TA10632G-(cit35)/*[position()=1]) 2012; 47 Xu (C7TA10632G-(cit36)/*[position()=1]) 2016; 10 Yu (C7TA10632G-(cit16)/*[position()=1]) 2017; 29 Wang (C7TA10632G-(cit10)/*[position()=1]) 2013; 3 Jiao (C7TA10632G-(cit20)/*[position()=1]) 2016; 4 Armstrong (C7TA10632G-(cit3)/*[position()=1]) 1996; 381 Wang (C7TA10632G-(cit7)/*[position()=1]) 2016; 11 Liu (C7TA10632G-(cit11)/*[position()=1]) 2012; 5 Lin (C7TA10632G-(cit5)/*[position()=1]) 2015; 520 Jiang (C7TA10632G-(cit39)/*[position()=1]) 2014; 161 Wang (C7TA10632G-(cit12)/*[position()=1]) 2014; 7 Wu (C7TA10632G-(cit13)/*[position()=1]) 2016; 28 Seo (C7TA10632G-(cit24)/*[position()=1]) 2013; 39 Wang (C7TA10632G-(cit14)/*[position()=1]) 2017; 8 |
References_xml | – volume: 10 start-page: 3823 year: 2016 ident: C7TA10632G-(cit36)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b00704 – volume: 7 start-page: 80 year: 2014 ident: C7TA10632G-(cit12)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508001h – volume: 28 start-page: 7564 year: 2016 ident: C7TA10632G-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601357 – volume: 381 start-page: 499 year: 1996 ident: C7TA10632G-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/381499a0 – volume: 140 start-page: 1862 year: 1993 ident: C7TA10632G-(cit4)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2220730 – volume: 520 start-page: 324 year: 2015 ident: C7TA10632G-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature14340 – volume: 27 start-page: 4926 year: 2015 ident: C7TA10632G-(cit9)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01918 – volume: 5 start-page: 9743 year: 2012 ident: C7TA10632G-(cit11)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22987k – volume: 29 start-page: 1604118 year: 2017 ident: C7TA10632G-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604118 – volume: 167 start-page: 206 year: 2007 ident: C7TA10632G-(cit22)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.02.008 – volume: 7 start-page: 31970 year: 2017 ident: C7TA10632G-(cit29)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA03960C – volume: 6 start-page: 47655 year: 2016 ident: C7TA10632G-(cit17)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA06467A – volume: 114 start-page: 18347 year: 2010 ident: C7TA10632G-(cit31)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp106015t – volume: 6 start-page: 1600137 year: 2016 ident: C7TA10632G-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600137 – volume: 3 start-page: 3383 year: 2013 ident: C7TA10632G-(cit10)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03383 – volume: 11 start-page: 1911 year: 2017 ident: C7TA10632G-(cit21)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b07995 – volume: 5 start-page: 20545 year: 2015 ident: C7TA10632G-(cit33)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA00035A – volume: 51 start-page: 11892 year: 2015 ident: C7TA10632G-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00542F – volume: 191 start-page: 954 year: 2016 ident: C7TA10632G-(cit26)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.047 – volume: 47 start-page: 1140 year: 2012 ident: C7TA10632G-(cit35)/*[position()=1] publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201200143 – volume: 161 start-page: D640 year: 2014 ident: C7TA10632G-(cit39)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181412jes – volume: 5 start-page: 19587 year: 2015 ident: C7TA10632G-(cit28)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA15033C – volume: 148 start-page: A838 year: 2001 ident: C7TA10632G-(cit1)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379740 – volume: 28 start-page: 9218 year: 2016 ident: C7TA10632G-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602958 – volume: 109 start-page: 276 year: 2016 ident: C7TA10632G-(cit15)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.08.027 – volume: 29 start-page: 1605958 year: 2017 ident: C7TA10632G-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605958 – volume: 8 start-page: 14283 year: 2017 ident: C7TA10632G-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14283 – volume: 27 start-page: 238 year: 2016 ident: C7TA10632G-(cit38)/*[position()=1] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2015.12.008 – volume: 18 start-page: 2956 year: 2016 ident: C7TA10632G-(cit27)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE00117C – volume: 11 start-page: 469 year: 2016 ident: C7TA10632G-(cit7)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b06446 – volume: 82 start-page: 623 year: 2008 ident: C7TA10632G-(cit32)/*[position()=1] publication-title: Vacuum doi: 10.1016/j.vacuum.2007.10.004 – volume: 97 start-page: 42 year: 2013 ident: C7TA10632G-(cit37)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.101 – volume: 5 start-page: 85179 year: 2015 ident: C7TA10632G-(cit25)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA16128B – volume: 39 start-page: 1749 year: 2013 ident: C7TA10632G-(cit24)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.08.021 – volume: 27 start-page: 121 year: 2016 ident: C7TA10632G-(cit30)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.043 – volume: 1 start-page: 11126 year: 2013 ident: C7TA10632G-(cit23)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12621h – volume: 528 start-page: 213 year: 2013 ident: C7TA10632G-(cit34)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.09.084 – volume: 9 start-page: 102 year: 2016 ident: C7TA10632G-(cit40)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03149D – volume: 4 start-page: 1112 year: 2016 ident: C7TA10632G-(cit20)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201600125 – volume: 149 start-page: A1184 year: 2002 ident: C7TA10632G-(cit2)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1498255 |
SSID | ssj0000800699 |
Score | 2.5609667 |
Snippet | Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3084 |
SubjectTerms | Aluminum Aluminum-ion batteries batteries Cathodes copper Copper oxides cupric oxide Current density Discharge Electrochemical analysis Electrochemistry Electrode materials energy Energy consumption Energy storage Lithium microparticles Nanorods Porous materials surface area Synthesis |
Title | Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries |
URI | https://www.proquest.com/docview/2010903152 https://www.proquest.com/docview/2237522165 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lOUDWQEF1RlZPbiOMeqGhtofBw6qbcodh0tiKXTmlz2X_Ef8l4cO-66w-CSVi-J0_r94vf8Pgn5oGLO-JIlUVZmIjoSUkUSBEvEjNQgfpasPMR852_fxen50ddFshiN_gRRS22jDvTNnXkl_8NVoAFfMUv2HzjrBwUCfAf-whE4DMd78fjn6hojWGftj8klBtatsUaAmYTOgTU2ksGaxNFVkCKAxVpXXexqY3-nDaaEhaqq28sIIaG6wpsuxHBbfR1u1a5n3MFkatN_wkGNTS7s7PMuWQvjcb0p35usF60pTS9IQ_pJu7poB-nhDNxAqxzxrLKk6ldlQjtGuOiyOImxpqklmZBmu926lVoEgEyDVZfHts1cL8F5bDuQbkmHmGNx1Vk6n8JGmLOTQQY6v_8t0egDFjtXPc_y4d4HZJfBzgRkwe70eP7lzBv2UAUXXd9S_79cWVyefRoG2FSENvWATrmZPyGPe7bSqYXYUzIy9TPyKKhV-ZwYCzYKYKMB2OgG2GixprfBRnuwUY8YCqdoCDbqwfaCnH8-ns9Oo75HR6RBk20ixkqZciPQ3S7gM9HYWL7UeqlLqQtTKAkyoUxMXKRLJaURcaZVwdH0kMagLL8kO_WqNq8I1VJzmSRcpWi0KFUmC2ZgdwwTKmBO5Zh8dBOW676APfZR-Z1vc2dM3vtrr2zZljuv2nfznvev9TpnXawyB712TN750_AeoSetqA1MdQ46dQobl0ORvL7Xg_bIQ4S8Nd3tk53mujVvQJlt1NsePn8B3tGjeA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+CuO+microsphere+architectures+as+high-performance+cathode+materials+for+aluminum-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Xuefeng&rft.au=Zhang%2C+Guohua&rft.au=Wang%2C+Shuai&rft.au=Li%2C+Shijie&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=7&rft.spage=3084&rft.epage=3090&rft_id=info:doi/10.1039%2FC7TA10632G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TA10632G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |