Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries

Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 7; pp. 3084 - 3090
Main Authors Zhang, Xuefeng, Zhang, Guohua, Wang, Shuai, Li, Shijie, Jiao, Shuqiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m 2 g −1 and a pore volume of 0.179 cm 3 g −1 . These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g −1 (current density of 50 mA g −1 ), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g −1 at current densities of 50, 100 and 200 mA g −1 , respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices.
AbstractList Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m² g⁻¹ and a pore volume of 0.179 cm³ g⁻¹. These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g⁻¹ (current density of 50 mA g⁻¹), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g⁻¹ at current densities of 50, 100 and 200 mA g⁻¹, respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices.
Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m 2 g −1 and a pore volume of 0.179 cm 3 g −1 . These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g −1 (current density of 50 mA g −1 ), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g −1 at current densities of 50, 100 and 200 mA g −1 , respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices.
Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide (PM-CuO) composed of stacked numerous bitty nanorods has been synthesized for use in AIBs. Using a simple one-pot hydrothermal process, the-as-synthesized PM-CuO possess a large specific surface area of 21.61 m2 g−1 and a pore volume of 0.179 cm3 g−1. These unique porous features allow PM-CuO to improve the electrochemical performance in the assembled AIBs, which exhibit a high initial charge and discharge capacity of 270.62 and 250.12 mA h g−1 (current density of 50 mA g−1), respectively. In the cycling performance, discharge capacity was observed to remain over 130, 121 and 112 mA h g−1 at current densities of 50, 100 and 200 mA g−1, respectively. The favorable properties of PM-CuO cathode materials are attributed to the unique porous structure and this makes them a promising potential material for use as energy storage devices.
Author Zhang, Guohua
Jiao, Shuqiang
Li, Shijie
Wang, Shuai
Zhang, Xuefeng
Author_xml – sequence: 1
  givenname: Xuefeng
  surname: Zhang
  fullname: Zhang, Xuefeng
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China
– sequence: 2
  givenname: Guohua
  surname: Zhang
  fullname: Zhang, Guohua
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China
– sequence: 3
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China
– sequence: 4
  givenname: Shijie
  surname: Li
  fullname: Li, Shijie
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China
– sequence: 5
  givenname: Shuqiang
  orcidid: 0000-0001-9600-752X
  surname: Jiao
  fullname: Jiao, Shuqiang
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, PR China
BookMark eNptkEFLAzEQhYNUsGov_oKAFxFWJ9lmkz2WolUo1EM9L2k666bsbmqSPfjvTakoFOfyBt43w8y7JKPe9UjIDYMHBnn5OJfrGYMi54szMuYgIJPTshj99kpdkEkIO0ilAIqyHBN8c94Ngc6HFe2s8S7sG_RItTeNjWji4DFQHWhjP5psj752vtO9QWp0bNwWaacjeqvbQJNFdTt0th-6zLqebnQ8eBiuyXmdCJz86BV5f35az1-y5WrxOp8tM5OXMmac10rmWEyFmhZJhSnElNXGbE2tjEa9UUKqWiBoud0ohQWUZqNzYJJLUGV-Re6Oe_fefQ4YYtXZYLBtdY_py4rzXArOWSESenuC7tzg-3RdxYFBCTkTPFH3R-qQTPBYV3tvO-2_KgbVIfTqL_QEwwlsbNQxJRG9tu1_I9-f-YY2
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_126359
crossref_primary_10_1039_C9TA00762H
crossref_primary_10_1016_j_triboint_2020_106561
crossref_primary_10_1016_j_ccr_2022_214856
crossref_primary_10_3390_batteries9020092
crossref_primary_10_1002_ange_202405750
crossref_primary_10_1039_C9NR06481H
crossref_primary_10_1016_j_electacta_2021_139498
crossref_primary_10_2298_PAC2201064W
crossref_primary_10_1038_s41598_019_50156_6
crossref_primary_10_1126_sciadv_abg6314
crossref_primary_10_1021_acsami_0c12389
crossref_primary_10_1039_D4GC04505J
crossref_primary_10_1039_D1QI01474A
crossref_primary_10_1016_j_ensm_2022_02_026
crossref_primary_10_1002_smll_202204121
crossref_primary_10_1149_1945_7111_ad1c12
crossref_primary_10_1016_j_compositesb_2021_109083
crossref_primary_10_1039_C8TA11132D
crossref_primary_10_1021_acs_chemrev_0c01257
crossref_primary_10_1021_acsaem_0c02797
crossref_primary_10_1016_j_jelechem_2024_118234
crossref_primary_10_1039_D0TA00674B
crossref_primary_10_1016_j_ensm_2023_102922
crossref_primary_10_1016_j_pmatsci_2022_100960
crossref_primary_10_1051_epjap_2023230062
crossref_primary_10_1021_acssuschemeng_8b06063
crossref_primary_10_1016_j_ceramint_2020_07_233
crossref_primary_10_1016_j_electacta_2020_136677
crossref_primary_10_1002_adma_202004920
crossref_primary_10_2139_ssrn_3995823
crossref_primary_10_1002_anie_202114681
crossref_primary_10_1016_j_jallcom_2019_152864
crossref_primary_10_1016_j_ensm_2020_05_029
crossref_primary_10_1016_j_cej_2020_125679
crossref_primary_10_1021_acsaem_0c00921
crossref_primary_10_1021_acsaem_2c02010
crossref_primary_10_1142_S0217984923501427
crossref_primary_10_1002_anie_202405750
crossref_primary_10_1002_celc_201900965
crossref_primary_10_1016_j_nantod_2020_100870
crossref_primary_10_1021_acs_jpclett_0c00324
crossref_primary_10_1007_s11426_021_1105_5
crossref_primary_10_1016_j_pmatsci_2024_101322
crossref_primary_10_1016_j_jelechem_2022_117014
crossref_primary_10_1039_C8EN00930A
crossref_primary_10_1016_j_jpowsour_2019_227173
crossref_primary_10_1016_j_ensm_2022_01_019
crossref_primary_10_1016_j_nanoen_2020_105384
crossref_primary_10_1016_j_cej_2020_126000
crossref_primary_10_1002_ange_202114681
crossref_primary_10_54227_mlab_20220055
crossref_primary_10_1007_s10853_023_08668_0
crossref_primary_10_1039_D2TA04165K
crossref_primary_10_1016_j_electacta_2024_145196
crossref_primary_10_1149_1945_7111_ab9405
crossref_primary_10_1039_C9EE00862D
crossref_primary_10_1007_s12274_022_4517_x
crossref_primary_10_1016_j_mtsust_2022_100213
crossref_primary_10_1016_j_jssc_2023_124511
crossref_primary_10_1002_adfm_202010569
crossref_primary_10_1002_adfm_202010445
crossref_primary_10_1016_j_mattod_2022_09_005
crossref_primary_10_1007_s10854_021_06249_y
crossref_primary_10_1039_C9TA01550G
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1002_slct_202204575
crossref_primary_10_1016_j_gee_2021_11_009
crossref_primary_10_1093_nsr_nwaa178
crossref_primary_10_1039_C9NJ05682C
crossref_primary_10_1021_acssuschemeng_9b06193
crossref_primary_10_1039_D0QI01302A
crossref_primary_10_1021_acsami_2c09765
crossref_primary_10_1002_batt_202300298
crossref_primary_10_1111_jace_16147
crossref_primary_10_1039_C9SE00941H
crossref_primary_10_1039_D1SE01469B
crossref_primary_10_34133_2021_9204217
crossref_primary_10_1016_j_ensm_2019_03_028
crossref_primary_10_1016_j_electacta_2021_137790
crossref_primary_10_5004_dwt_2022_28794
crossref_primary_10_1016_j_cej_2021_129131
crossref_primary_10_1002_adfm_201909565
crossref_primary_10_1016_j_jechem_2020_09_015
crossref_primary_10_1021_acsami_3c17248
crossref_primary_10_1039_D1RA08067A
crossref_primary_10_3390_batteries8090105
crossref_primary_10_1002_chem_202303892
crossref_primary_10_1002_aenm_202201653
crossref_primary_10_1039_C9NJ03626A
crossref_primary_10_1007_s00604_020_04238_2
crossref_primary_10_1039_D1QM01267C
crossref_primary_10_1115_1_4045784
crossref_primary_10_1002_adfm_202305511
crossref_primary_10_1016_j_ensm_2023_03_035
crossref_primary_10_1039_C9NR09944A
crossref_primary_10_1021_acs_energyfuels_3c04112
crossref_primary_10_1016_j_joule_2021_12_003
crossref_primary_10_1021_acssuschemeng_8b05292
crossref_primary_10_1016_j_cej_2021_129385
crossref_primary_10_1002_smll_202201362
crossref_primary_10_1002_smll_201904310
crossref_primary_10_1016_j_ensm_2021_03_012
crossref_primary_10_1039_C8CP04772C
crossref_primary_10_1016_j_est_2024_111287
crossref_primary_10_1016_j_jechem_2020_08_035
crossref_primary_10_1016_j_cej_2024_158528
crossref_primary_10_1016_j_jpowsour_2019_03_029
crossref_primary_10_1002_ente_201800550
crossref_primary_10_1002_aenm_202002151
crossref_primary_10_3103_S0003701X22030033
crossref_primary_10_1002_ente_201900649
crossref_primary_10_1002_slct_201903842
crossref_primary_10_1007_s11581_022_04530_6
crossref_primary_10_3390_nano10102024
crossref_primary_10_1021_acsmaterialslett_0c00208
crossref_primary_10_1007_s12678_018_0496_9
crossref_primary_10_1039_D1NA00214G
crossref_primary_10_1002_admi_202200635
crossref_primary_10_1016_j_jallcom_2019_07_324
crossref_primary_10_1016_j_ensm_2021_10_044
crossref_primary_10_1039_C9SE00288J
crossref_primary_10_2139_ssrn_4018807
crossref_primary_10_1016_j_jechem_2020_03_032
crossref_primary_10_1021_acs_jpcc_9b07509
crossref_primary_10_1016_j_ceramint_2022_09_241
crossref_primary_10_1016_j_cej_2021_133135
crossref_primary_10_1021_acsami_4c09943
crossref_primary_10_1016_j_electacta_2020_136174
crossref_primary_10_1002_adsu_202100418
crossref_primary_10_1016_j_jpowsour_2019_227147
crossref_primary_10_1021_acs_jpcc_9b09124
crossref_primary_10_1016_j_cej_2020_124370
crossref_primary_10_1021_acsanm_9b01391
Cites_doi 10.1021/acsnano.6b00704
10.1021/am508001h
10.1002/adma.201601357
10.1038/381499a0
10.1149/1.2220730
10.1038/nature14340
10.1021/acs.chemmater.5b01918
10.1039/c2ee22987k
10.1002/adma.201604118
10.1016/j.jpowsour.2007.02.008
10.1039/C7RA03960C
10.1039/C6RA06467A
10.1021/jp106015t
10.1002/aenm.201600137
10.1038/srep03383
10.1021/acsnano.6b07995
10.1039/C5RA00035A
10.1039/C5CC00542F
10.1016/j.electacta.2016.01.047
10.1002/crat.201200143
10.1149/2.0181412jes
10.1039/C4RA15033C
10.1149/1.1379740
10.1002/adma.201602958
10.1016/j.carbon.2016.08.027
10.1002/adma.201605958
10.1038/ncomms14283
10.1016/j.apt.2015.12.008
10.1039/C6CE00117C
10.1021/acsnano.6b06446
10.1016/j.vacuum.2007.10.004
10.1016/j.electacta.2013.02.101
10.1039/C5RA16128B
10.1016/j.ceramint.2012.08.021
10.1016/j.nanoen.2016.06.043
10.1039/c3ta12621h
10.1016/j.tsf.2012.09.084
10.1039/C5EE03149D
10.1002/ente.201600125
10.1149/1.1498255
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C7TA10632G
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 3090
ExternalDocumentID 10_1039_C7TA10632G
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c397t-22f873e6458463e65c6541fccdcf8caeab8578f5e0a7db88e609cba3017270893
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 06:10:52 EDT 2025
Mon Jun 30 12:01:23 EDT 2025
Tue Jul 01 03:13:47 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-22f873e6458463e65c6541fccdcf8caeab8578f5e0a7db88e609cba3017270893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9600-752X
PQID 2010903152
PQPubID 2047523
PageCount 7
ParticipantIDs proquest_miscellaneous_2237522165
proquest_journals_2010903152
crossref_primary_10_1039_C7TA10632G
crossref_citationtrail_10_1039_C7TA10632G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Geng (C7TA10632G-(cit9)/*[position()=1]) 2015; 27
Chen (C7TA10632G-(cit18)/*[position()=1]) 2017; 29
Gao (C7TA10632G-(cit31)/*[position()=1]) 2010; 114
Sun (C7TA10632G-(cit19)/*[position()=1]) 2015; 51
Shi (C7TA10632G-(cit25)/*[position()=1]) 2015; 5
Wang (C7TA10632G-(cit8)/*[position()=1]) 2016; 6
Ohzuku (C7TA10632G-(cit4)/*[position()=1]) 1993; 140
Nasir (C7TA10632G-(cit29)/*[position()=1]) 2017; 7
Min (C7TA10632G-(cit30)/*[position()=1]) 2016; 27
Shackery (C7TA10632G-(cit26)/*[position()=1]) 2016; 191
Chen (C7TA10632G-(cit2)/*[position()=1]) 2002; 149
Jiao (C7TA10632G-(cit15)/*[position()=1]) 2016; 109
Yang (C7TA10632G-(cit17)/*[position()=1]) 2016; 6
Wu (C7TA10632G-(cit23)/*[position()=1]) 2013; 1
Wang (C7TA10632G-(cit22)/*[position()=1]) 2007; 167
Bhosale (C7TA10632G-(cit38)/*[position()=1]) 2016; 27
Senthilkumar (C7TA10632G-(cit33)/*[position()=1]) 2015; 5
Li (C7TA10632G-(cit40)/*[position()=1]) 2016; 9
Yan (C7TA10632G-(cit27)/*[position()=1]) 2016; 18
Stadie (C7TA10632G-(cit21)/*[position()=1]) 2017; 11
Endut (C7TA10632G-(cit34)/*[position()=1]) 2013; 528
Al-Kuhaili (C7TA10632G-(cit32)/*[position()=1]) 2008; 82
Elia (C7TA10632G-(cit6)/*[position()=1]) 2016; 28
Leising (C7TA10632G-(cit1)/*[position()=1]) 2001; 148
Gately (C7TA10632G-(cit28)/*[position()=1]) 2015; 5
Canas (C7TA10632G-(cit37)/*[position()=1]) 2013; 97
Li (C7TA10632G-(cit35)/*[position()=1]) 2012; 47
Xu (C7TA10632G-(cit36)/*[position()=1]) 2016; 10
Yu (C7TA10632G-(cit16)/*[position()=1]) 2017; 29
Wang (C7TA10632G-(cit10)/*[position()=1]) 2013; 3
Jiao (C7TA10632G-(cit20)/*[position()=1]) 2016; 4
Armstrong (C7TA10632G-(cit3)/*[position()=1]) 1996; 381
Wang (C7TA10632G-(cit7)/*[position()=1]) 2016; 11
Liu (C7TA10632G-(cit11)/*[position()=1]) 2012; 5
Lin (C7TA10632G-(cit5)/*[position()=1]) 2015; 520
Jiang (C7TA10632G-(cit39)/*[position()=1]) 2014; 161
Wang (C7TA10632G-(cit12)/*[position()=1]) 2014; 7
Wu (C7TA10632G-(cit13)/*[position()=1]) 2016; 28
Seo (C7TA10632G-(cit24)/*[position()=1]) 2013; 39
Wang (C7TA10632G-(cit14)/*[position()=1]) 2017; 8
References_xml – volume: 10
  start-page: 3823
  year: 2016
  ident: C7TA10632G-(cit36)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00704
– volume: 7
  start-page: 80
  year: 2014
  ident: C7TA10632G-(cit12)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508001h
– volume: 28
  start-page: 7564
  year: 2016
  ident: C7TA10632G-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601357
– volume: 381
  start-page: 499
  year: 1996
  ident: C7TA10632G-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/381499a0
– volume: 140
  start-page: 1862
  year: 1993
  ident: C7TA10632G-(cit4)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2220730
– volume: 520
  start-page: 324
  year: 2015
  ident: C7TA10632G-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14340
– volume: 27
  start-page: 4926
  year: 2015
  ident: C7TA10632G-(cit9)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01918
– volume: 5
  start-page: 9743
  year: 2012
  ident: C7TA10632G-(cit11)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22987k
– volume: 29
  start-page: 1604118
  year: 2017
  ident: C7TA10632G-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604118
– volume: 167
  start-page: 206
  year: 2007
  ident: C7TA10632G-(cit22)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.02.008
– volume: 7
  start-page: 31970
  year: 2017
  ident: C7TA10632G-(cit29)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03960C
– volume: 6
  start-page: 47655
  year: 2016
  ident: C7TA10632G-(cit17)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06467A
– volume: 114
  start-page: 18347
  year: 2010
  ident: C7TA10632G-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106015t
– volume: 6
  start-page: 1600137
  year: 2016
  ident: C7TA10632G-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600137
– volume: 3
  start-page: 3383
  year: 2013
  ident: C7TA10632G-(cit10)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03383
– volume: 11
  start-page: 1911
  year: 2017
  ident: C7TA10632G-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07995
– volume: 5
  start-page: 20545
  year: 2015
  ident: C7TA10632G-(cit33)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA00035A
– volume: 51
  start-page: 11892
  year: 2015
  ident: C7TA10632G-(cit19)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00542F
– volume: 191
  start-page: 954
  year: 2016
  ident: C7TA10632G-(cit26)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.047
– volume: 47
  start-page: 1140
  year: 2012
  ident: C7TA10632G-(cit35)/*[position()=1]
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201200143
– volume: 161
  start-page: D640
  year: 2014
  ident: C7TA10632G-(cit39)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0181412jes
– volume: 5
  start-page: 19587
  year: 2015
  ident: C7TA10632G-(cit28)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA15033C
– volume: 148
  start-page: A838
  year: 2001
  ident: C7TA10632G-(cit1)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379740
– volume: 28
  start-page: 9218
  year: 2016
  ident: C7TA10632G-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602958
– volume: 109
  start-page: 276
  year: 2016
  ident: C7TA10632G-(cit15)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.08.027
– volume: 29
  start-page: 1605958
  year: 2017
  ident: C7TA10632G-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605958
– volume: 8
  start-page: 14283
  year: 2017
  ident: C7TA10632G-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14283
– volume: 27
  start-page: 238
  year: 2016
  ident: C7TA10632G-(cit38)/*[position()=1]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2015.12.008
– volume: 18
  start-page: 2956
  year: 2016
  ident: C7TA10632G-(cit27)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00117C
– volume: 11
  start-page: 469
  year: 2016
  ident: C7TA10632G-(cit7)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06446
– volume: 82
  start-page: 623
  year: 2008
  ident: C7TA10632G-(cit32)/*[position()=1]
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2007.10.004
– volume: 97
  start-page: 42
  year: 2013
  ident: C7TA10632G-(cit37)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.101
– volume: 5
  start-page: 85179
  year: 2015
  ident: C7TA10632G-(cit25)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16128B
– volume: 39
  start-page: 1749
  year: 2013
  ident: C7TA10632G-(cit24)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.08.021
– volume: 27
  start-page: 121
  year: 2016
  ident: C7TA10632G-(cit30)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.043
– volume: 1
  start-page: 11126
  year: 2013
  ident: C7TA10632G-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12621h
– volume: 528
  start-page: 213
  year: 2013
  ident: C7TA10632G-(cit34)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.09.084
– volume: 9
  start-page: 102
  year: 2016
  ident: C7TA10632G-(cit40)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03149D
– volume: 4
  start-page: 1112
  year: 2016
  ident: C7TA10632G-(cit20)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600125
– volume: 149
  start-page: A1184
  year: 2002
  ident: C7TA10632G-(cit2)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1498255
SSID ssj0000800699
Score 2.5609667
Snippet Cathode materials with a porous structure are important in the development of aluminum-ion batteries (AIBs). In this research, porous microspheric copper oxide...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3084
SubjectTerms Aluminum
Aluminum-ion batteries
batteries
Cathodes
copper
Copper oxides
cupric oxide
Current density
Discharge
Electrochemical analysis
Electrochemistry
Electrode materials
energy
Energy consumption
Energy storage
Lithium
microparticles
Nanorods
Porous materials
surface area
Synthesis
Title Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries
URI https://www.proquest.com/docview/2010903152
https://www.proquest.com/docview/2237522165
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lOUDWQEF1RlZPbiOMeqGhtofBw6qbcodh0tiKXTmlz2X_Ef8l4cO-66w-CSVi-J0_r94vf8Pgn5oGLO-JIlUVZmIjoSUkUSBEvEjNQgfpasPMR852_fxen50ddFshiN_gRRS22jDvTNnXkl_8NVoAFfMUv2HzjrBwUCfAf-whE4DMd78fjn6hojWGftj8klBtatsUaAmYTOgTU2ksGaxNFVkCKAxVpXXexqY3-nDaaEhaqq28sIIaG6wpsuxHBbfR1u1a5n3MFkatN_wkGNTS7s7PMuWQvjcb0p35usF60pTS9IQ_pJu7poB-nhDNxAqxzxrLKk6ldlQjtGuOiyOImxpqklmZBmu926lVoEgEyDVZfHts1cL8F5bDuQbkmHmGNx1Vk6n8JGmLOTQQY6v_8t0egDFjtXPc_y4d4HZJfBzgRkwe70eP7lzBv2UAUXXd9S_79cWVyefRoG2FSENvWATrmZPyGPe7bSqYXYUzIy9TPyKKhV-ZwYCzYKYKMB2OgG2GixprfBRnuwUY8YCqdoCDbqwfaCnH8-ns9Oo75HR6RBk20ixkqZciPQ3S7gM9HYWL7UeqlLqQtTKAkyoUxMXKRLJaURcaZVwdH0kMagLL8kO_WqNq8I1VJzmSRcpWi0KFUmC2ZgdwwTKmBO5Zh8dBOW676APfZR-Z1vc2dM3vtrr2zZljuv2nfznvev9TpnXawyB712TN750_AeoSetqA1MdQ46dQobl0ORvL7Xg_bIQ4S8Nd3tk53mujVvQJlt1NsePn8B3tGjeA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+CuO+microsphere+architectures+as+high-performance+cathode+materials+for+aluminum-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Xuefeng&rft.au=Zhang%2C+Guohua&rft.au=Wang%2C+Shuai&rft.au=Li%2C+Shijie&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=7&rft.spage=3084&rft.epage=3090&rft_id=info:doi/10.1039%2FC7TA10632G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TA10632G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon