Evolving and clustering fuzzy decision tree for financial time series data forecasting

Stock price predictions have always been a subject of interest for investors and professional analysts. Nevertheless, determining the best time to buy or sell a stock remains very difficult because there are many factors that may influence the stock prices. This paper establishes a novel financial t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 36; no. 2; pp. 3761 - 3773
Main Authors Lai, Robert K., Fan, Chin-Yuan, Huang, Wei-Hsiu, Chang, Pei-Chann
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stock price predictions have always been a subject of interest for investors and professional analysts. Nevertheless, determining the best time to buy or sell a stock remains very difficult because there are many factors that may influence the stock prices. This paper establishes a novel financial time series-forecasting model by evolving and clustering fuzzy decision tree for stocks in Taiwan Stock Exchange Corporation (TSEC). This forecasting model integrates a data clustering technique, a fuzzy decision tree (FDT), and genetic algorithms (GA) to construct a decision-making system based on historical data and technical indexes. The set of historical data is divided into k sub-clusters by adopting K-means algorithm. GA is then applied to evolve the number of fuzzy terms for each input index in FDT so the forecasting accuracy of the model can be further improved. A different forecasting model will be generated for each sub-cluster. In other words, the number of fuzzy terms in each sub-cluster will be different. Hit rate is applied as a performance measure and the proposed GAFDT model has the best performance of 82% average hit rate when compared with other approaches on various stocks in TSEC.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2008.02.025