Analytic determinants and inverses of Toeplitz and Hankel tridiagonal matrices with perturbed columns

In this paper, our main attention is paid to calculate the determinants and inverses of two types Toeplitz and Hankel tridiagonal matrices with perturbed columns. Specifically, the determinants of the × Toeplitz tridiagonal matrices with perturbed columns (type I, II) can be expressed by using the f...

Full description

Saved in:
Bibliographic Details
Published inSpecial matrices Vol. 8; no. 1; pp. 131 - 143
Main Authors Fu, Yaru, Jiang, Xiaoyu, Jiang, Zhaolin, Jhang, Seongtae
Format Journal Article
LanguageEnglish
Published De Gruyter 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, our main attention is paid to calculate the determinants and inverses of two types Toeplitz and Hankel tridiagonal matrices with perturbed columns. Specifically, the determinants of the × Toeplitz tridiagonal matrices with perturbed columns (type I, II) can be expressed by using the famous Fibonacci numbers, the inverses of Toeplitz tridiagonal matrices with perturbed columns can also be expressed by using the well-known Lucas numbers and four entries in matrix 𝔸. And the determinants of the Hankel tridiagonal matrices with perturbed columns (type I, II) are (−1]) times of the determinant of the Toeplitz tridiagonal matrix with perturbed columns type I, the entries of the inverses of the Hankel tridiagonal matrices with perturbed columns (type I, II) are the same as that of the inverse of Toeplitz tridiagonal matrix with perturbed columns type I, except the position. In addition, we present some algorithms based on the main theoretical results. Comparison of our new algorithms and some recent works is given. The numerical result confirms our new theoretical results. And we show the superiority of our method by comparing the CPU time of some existing algorithms studied recently.
ISSN:2300-7451
2300-7451
DOI:10.1515/spma-2020-0012