The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position

Optimal surgical positioning of cable-screw pairs in repairing periprosthetic femur fractures near the tip of a total hip implant still remains unclear. No studies in the literature to date have developed a fully three-dimensional finite element (FE) model that has been validated experimentally to a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 225; no. 9; p. 857
Main Authors Dubov, A, Kim, S Y R, Shah, S, Schemitsch, E H, Zdero, R, Bougherara, H
Format Journal Article
LanguageEnglish
Published England 01.09.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Optimal surgical positioning of cable-screw pairs in repairing periprosthetic femur fractures near the tip of a total hip implant still remains unclear. No studies in the literature to date have developed a fully three-dimensional finite element (FE) model that has been validated experimentally to assess these injury patterns. The aim of the present study was to evaluate the biomechanical performance of three different implant-bone constructs for the fixation of periprosthetic femoral shaft fractures following total hip arthroplasty. Experimentally, three bone-plate repair configurations were applied to the periprosthetic synthetic femur fractured with a 5 mm gap near the tip of a total hip implant. Constructs A, B, and C, respectively, had successively larger distances between the most proximal and the most distal cable-screw pairs used to affix the plate. Specimens were oriented in 15 degrees adduction, subjected to 1000 N of axial force to simulate the single-legged stance phase of walking, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic three-dimensional FE model was developed to mimic the experimental setup. Results showed excellent agreement between experimental versus FE analysis strains, yielding a Pearson linearity coefficient, R2, of 0.90 and a slope for the line of best data fit of 0.96. FE axial stiffnesses were 601 N/mm (Construct A), 849 N/mm (Construct B), and 1359 N/mm (Construct C). FE surface stress maps for cortical bone showed maximum von Mises values of 74 MPa (Construct A), 102 MPa (Construct B), and 57 MPa (Construct C). FE stress maps for the metallic components showed minimum von Mises values for Construct C, namely screw (716MPa), cable (445MPa), plate (548MPa), and hip implant (154MPa). In the case of good bone stock, as modelled by the present synthetic femur model, optimal fixation can be achieved with Construct C.
ISSN:0954-4119
DOI:10.1177/0954411911410642