The origins of room temperature hardening of Al–Cu–Mg alloys
The most commonly cited mechanisms for the rapid age hardening of Al–Cu–Mg alloys at about 100–200 °C are hardening by Guinier–Preston B zone formation, formation of Cu–Mg co-clusters and a dislocation–solute interaction mechanism. New experiments on ageing–deformation–ageing cycles at room temperat...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 387; pp. 222 - 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The most commonly cited mechanisms for the rapid age hardening of Al–Cu–Mg alloys at about 100–200
°C are hardening by Guinier–Preston B zone formation, formation of Cu–Mg co-clusters and a dislocation–solute interaction mechanism. New experiments on ageing–deformation–ageing cycles at room temperature indicate that no substantial additional age hardening occurs with the addition of deformation to the cycle, and hence, a dislocation–solute interaction mechanism appears unlikely. Instead, strengthening due to modulus hardening generated by the difference in shear modulus of Cu–Mg co-clusters and matrix is proposed as the main strengthening mechanism for room temperature hardening. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2004.01.085 |