A Plant Disease Classification Algorithm Based on Attention MobileNet V2

Plant growth is inevitably affected by diseases, and one effective method of disease detection is through the observation of leaf changes. To solve the problem of disease detection in complex backgrounds, where the distinction between plant diseases is hindered by large intra-class differences and s...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 9; p. 442
Main Authors Wang, Huan, Qiu, Shi, Ye, Huping, Liao, Xiaohan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant growth is inevitably affected by diseases, and one effective method of disease detection is through the observation of leaf changes. To solve the problem of disease detection in complex backgrounds, where the distinction between plant diseases is hindered by large intra-class differences and small inter-class differences, a complete plant-disease recognition process is proposed. The process was tested through experiments and research into traditional and deep features. In the face of difficulties related to plant-disease classification in complex backgrounds, the advantages of strong interpretability of traditional features and great robustness of deep features are fully utilized, and include the following components: (1) The OSTU algorithm based on the naive Bayes model is proposed to focus on where leaves are located and remove interference from complex backgrounds. (2) A multi-dimensional feature model is introduced in an interpretable manner from the perspective of traditional features to obtain leaf characteristics. (3) A MobileNet V2 network with a dual attention mechanism is proposed to establish a model that operates in both spatial and channel dimensions at the network level to facilitate plant-disease recognition. In the Plant Village open database test, the results demonstrated an average SEN of 94%, greater than other algorithms by 12.6%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a16090442