Hamilton’s gradient estimates and a monotonicity formula for heat flows on metric measure spaces
In this paper, we extend the Hamilton’s gradient estimates (Hamilton 1993) and a monotonicity formula of entropy (Ni 2004) for heat flows from smooth Riemannian manifolds to (non-smooth) metric measure spaces with appropriate Riemannian curvature-dimension condition.
Saved in:
Published in | Nonlinear analysis Vol. 131; pp. 32 - 47 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/j.na.2015.08.011 |
Cover
Summary: | In this paper, we extend the Hamilton’s gradient estimates (Hamilton 1993) and a monotonicity formula of entropy (Ni 2004) for heat flows from smooth Riemannian manifolds to (non-smooth) metric measure spaces with appropriate Riemannian curvature-dimension condition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2015.08.011 |