Hepatic microenvironment underlies fibrosis in chronic hepatitis B patients

Chronic hepatitis B virus (HBV) infection is a leading cause of liver morbidity and mortality worldwide. Liver fibrosis resulting from viral infection-associated inflammation and direct liver damage plays an important role in disease management and prognostication. The mechanisms underlying the cont...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of gastroenterology : WJG Vol. 26; no. 27; pp. 3917 - 3928
Main Authors Yao, Qun-Yan, Feng, Ya-Dong, Han, Pei, Yang, Feng, Song, Guang-Qi
Format Journal Article
LanguageEnglish
Published United States Baishideng Publishing Group Inc 21.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronic hepatitis B virus (HBV) infection is a leading cause of liver morbidity and mortality worldwide. Liver fibrosis resulting from viral infection-associated inflammation and direct liver damage plays an important role in disease management and prognostication. The mechanisms underlying the contribution of the liver microenvironment to fibrosis in HBV patients are not fully understood. There is an absence of effective clinical treatments for liver fibrosis progression; thus, establishing a suitable microenvironment in order to design novel therapeutics and identify molecular biomarkers to stratify patients is urgently required. To examine a subset of pre-selected microenvironment factors of chronic HBV patients that may underlie fibrosis, with a focus on fibroblast activation. We examined the gene expression of key microenvironment factors in liver samples from patients with more advanced fibrosis compared with those with less severe fibrosis. We also used the human stellate cell line LX-2 in the study. Using different recombinant cytokines and growth factors or their combination, we studied how these factors interacted with LX-2 cells and pinpointed the cross-talk between the aforementioned factors and screened the most important factors. Of the secreted factors examined, transforming growth factor (TGF)-β1, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased in patients with advanced fibrosis. We found that besides TGF-β1, IL-1β can also induce a profibrotic cascade by stimulating the expression of connective tissue growth factor and platelet-derived growth factor (PDGF) in LX-2 cells. Furthermore, the proinflammatory response can be elicited in LX-2 cells following treatment with IL-1β and TNF-α, suggesting that stellate cells can respond to proinflammatory stimuli. By combining IL-1β and TGF-β1, we observed not only fibroblast activation as shown by αlpha-smooth muscle actin and PDGF induction, but also the inflammatory response as shown by increased expression of IL-1β. Collectively, our data from HBV patients and studies demonstrate that the hepatic microenvironment plays an important role in mediating the crosstalk between profibrotic and proinflammatory responses and modulating fibrosis in chronic HBV patients. For the establishment of a suitable microenvironment for HBV-induced liver fibrosis, not only TGF-β1 but also IL-1β should be considered as a necessary environmental factor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: Yao QY, Song GQ, Han P, and Yang F wrote the manuscript; Yao QY, Song GQ and Yang F designed the research; Yao QY and Yang F performed the research; Song GQ and Yang F analyzed the data; Yang F contributed new reagents/analytical tools.
Supported by the National Natural Science Foundation for the Youth of China, No. 81500460 and No. 81700550.
Corresponding author: Guang-Qi Song, PhD, Associate Professor, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai 200032, China. song_guangqi@fudan.edu.cn
ISSN:1007-9327
2219-2840
DOI:10.3748/wjg.v26.i27.3917